一、目的要求
1.知道对数函数是指数函数的反函数。
2.根据互为反函数的两个函数的图象的关系,由指数函数的图象画出对数函数的图象。
3.会求函数 的定义域。
4.会由对数函数的图象得出对数函数的性质。
二、内容分析
1.因为对数函数是指数函数的反函数,所以对数函数要借助指数函数研究。为此,要复习反函数的
有关内容:
(1)反函数的概念;
(2)函数y=f(x)的定义域(值域),正好是它的反函数的值域(定义域);
(3)函数y=f(x)的图象和它的反函数的图象关于直线y=x对称。
在此基础上,由(1)可得出对数函数的概念;由(2)可得出对数函数的定义域是指数函数的值域(0,+∞),对数函数的值域是指数函数的定义域(-∞,+∞);根据(3),由指数函数的图象就可画出对数函数的图象。
2.由零和负数没有对数也可知对数函数的定义域是(0,+∞)。同样函数 的定义域是{x|f(x)>0}。因此,求函数 的定义域就是解不等式f(x)>0。这一点可结合例1讲解。
3.由对数函数 与 的.图象可得出它们的性质。
函 | ? | ? |
性 | (1)定义域:(0,+∞) | |
(2)值域:(-∞,+∞) | ||
(3)过点(1,0),即当x=1时,y=0 | ||
(4)在(0,+∞)上是增函数 | 在(0,+∞)上是减函数 |
进而得出对数函数 (a>1,0
三、教学过程
1.复习提问
(1)什么样的函数是指数函数?
(2)指数函数有哪些性质?
(3)反函数的概念是什么?
(4)函数的定义域(值域)与它的反函数的定义域(值域)有什么关系?
(5)函数的图象与它的反函数的图象有什么关系?
2.新课讲解
(1)与学生继续研究指数函数一节开头的细胞分裂问题。在这个问题,由细胞分裂的个数y可以确定细胞分裂的次数。也就是说,细胞分裂的次数x是细胞分裂个数y的函数。由对数的定义,可得到新函数 ,其中细胞个数y是自变量,细胞分裂次数x是函数。由于习惯上用x表示自变量,y表示函数,上述函数就是 。
(2)在分析上述实例的基础上进而得出对数函数的一般概念。由对数函数是指数函数的反函数可知对数函数 与指数函数 关于直线y=x对称。因此画出指数函数 的图象,在这个图象上任取一点,作出这个点关于直线y=x的对称点,这些对称点就构成对数函数 的图象。让学生考虑如何画 的图象。
(3)让学生由 与 的图象可得出它们的性质:
由学生进而得出 (分a>1,0
(4)讲例1时向学生指出,求函数 的定义域,就是解不等式f(x)>0,也就是说,函数 的定义域是不等式f(x)>0的解集。
3.课堂练习
在第2题第(4)小题中,要求满足可得 x≥1。这一点可适当提示。
4.课堂小结
本课学习了指数函数、反函数、对数等内容的概念、图象和性质。
四、布置作业
小编为大家提供的湘教版高一上学期数学教学计划模板,大家仔细阅读了吗?最后祝同学们学习进步。
【高一数学对数函数的教学计划】相关文章:
5.对数函数的说课稿
本文来源:https://www.010zaixian.com/shiyongwen/2412641.htm