欢迎来到010在线作文网!

直角三角形测试题

试题 时间:2021-08-31 手机版

直角三角形测试题

  一 、选择题(每小题3分,共30分)

  1.计算:

  A. B. C. D.

  2.在△ 中, =90,如果 , ,那么sin 的值是( ).

  A. B. C. D.

  3.在△ 中, =90, , ,则sin ( )

  A. B. C. D.

  4. 在△ABC中,若三边BC、CA、AB满足 BC∶CA∶AB=5∶12∶13,则cos B ( )

  A. B. C. D.

  5.在△ 中, =90, ,则sin 的值是( )

  A. B. C. 1 D.

  6.已知在 中, ,则 的值为( )

  A. B. C. D.

  7.如图,一个小球由地面沿着坡度 的坡面向上前进了10 m,此时小球距离地面的高度为( )

  A. B.2 m C.4 m D. m

  8.如图,在菱形 中, , , ,则tan 的值是( )

  A. B.2 C. D.

  9. 直角三角形两直角边和为7,面积为6,则斜边长为()

  A. 5 B. C. 7 D.

  10.如图,已知:45

  A. B.

  C. D.

  二、填空题(每小题3分,共24分)

  11.在 中, , , ,则 ______.

  12.若 是锐角,cos = ,则 =_________.

  13.小兰想测量南塔的高度. 她在 处仰望塔顶,测得仰角为30,再往塔的方向前进50 m至 处,测得仰角为60,那么塔高 约为 _________ m.(小兰身高忽略不计, ).

  14.等腰三角形的腰长为2,腰上的高为1,则它的底角等于________ .

  15. 如图,已知Rt△ 中,斜边 上的高 , ,则 ________.

  16.△ABC的顶点 都在方格纸的格点上,则 _ .

  17.图①是我国古代著名的赵爽弦图的示意图,它是由四个全等的直角三角形围成的,若 ,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图②所示的数学 风车,则这个风车的外围周长是__________.

  18.如图是一个艺术窗的一部分,所有的'四边形都是正方形,三角形是直角三角形,其中最大正方形的边长为 ,则正方形A,B的面积和是_________.

  三、解答题(共46分)

  19.(8分)计算下列各题:

  (1)(2) .

  20.(6分)在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树的高度,设计的方案及测量数据如下:

  (1)在大树前的平地上选择一点 ,测得由点 看大树顶端 的仰角为35

  (2)在点 和大树之间选择一点 ( 、 、 在同一直线上),测得由点 看大树顶端 的仰角恰好为45

  (3)量出 、 两点间的距离为4.5 .

  请你根据以上数据求出大树 的高度.(结果保留3个有效数字)

  21.(6分)每年的5月15日是世界助残日.某商场门前的台阶共高出地面1.2米,为帮助残疾人便于轮椅行走,准备拆除台阶换成斜坡,又考虑安全,轮椅行走斜坡的坡角不得超过 ,已知此商场 门前的人行道距商场门的水平距离为8米(斜坡不能修在人行道上),问此商场能否把台阶换成斜坡?

  (参考数据: )

  22.(6分)如图,为了测量某建筑物CD的高度,先在地面上用 测角仪自A处测得建筑物顶部的仰角是30,然后在水平地面上向建筑物前进了100 m,此时自B处测得建筑物顶部的仰角是45.已知测角仪的高度是1.5 m,请你计算出该建筑物的高度.(取 1.732,结果精确到1 m)

  23.(6分)如图,在梯形 中, ∥ , , .

  (1)求sin 的值;

  (2)若 长度为 ,求梯形 的面积.

  24.(6分)如图,在小山的东侧 处有一热气球,以每分钟 的速度沿着仰角为60的方向上升,20 min后升到 处,这时热气球上的人发现在 的正西方向俯 角为45的 处有一着火点,求热气球的升空点 与着火点 的距离(结果保留根号).

  25.(8分)在△ 中 , , , .若 , 如图①,根据勾股定理,则 .若△ 不是直角三 角形,如图②和图③,请你类比勾股定理,试猜想 与 的关系,并证明你的结论.

  第25章 解直角三角形检测题参考答案

  1.C 解析: .

  2.A 解析:如图,

  3.D 解析:由勾股定理知, 所以 所以sin

  4.C 解析:设 ,则 , ,则 ,所以△ 是直角三角形,且 .所以在△ABC中, .

  5.B 解析:因为 =90, ,

  所以 .

  6.A 解析:如图,设 则 由勾股定理知, 所以

  7.B 解析:设小球距离地面的高度为 则小球水平移动的距离为 所以 解得

  8.B 解析:设 又因为在菱形 中, 所以 所以 所以 由勾股定理知 所以 2

  9.A 解析:设直角三角形的两直角边长分别为 则 所以斜边长

  10.B 解析:在锐角三角函数中仅当 45时, ,所以 选项错误;因为45

  11. 解析:如图,

  12.30 解析:因为 ,所以

  13.43.3 解析:因为 ,所以 所以 所以 ).

  14.15或75 解析:如图, .在图①中, ,所以 ;在图②中, ,所以 .

  15. 解析:在Rt△ 中,∵ , sin , .

  在Rt△ 中,∵ ,sin , .

  在Rt△ 中,∵ , .

  16. 解析:利用网格,从 点向 所在直线作垂线,利用勾股定理得 ,所以 .

  17.76 解析:如图,因为 ,所以 由勾股定理得 所以这个风车的外围周长为

  18.25 解析:设正方形A的边长为 正方形B的边长为 则 ,所以 .

  19.解:(1)

  (2)

  20.解:∵ 90 45,

  ∵ ,

  则 m,

  ∵ 35, tan tan 35 .

  整理,得 10.5.

  故大树 的高约为10.5

  21.解:因为 所以斜坡的坡角小于 ,

  故此商场能把台阶换成斜坡.

  22.解:设 ,则由题意可知 , m.

  在Rt△AEC中,tanCAE= ,即tan 30= ,

  ,即3x (x+100),解得x 50+50 .

  经检验 50+50 是原方程的解.

  故该建筑物的高度约为

  23.解:(1)∵ , .

  ∵ ∥ , .

  在梯形 中,∵ ,

  ∵ , 3 , 30 ,

  (2)过 作 于点 .

  在Rt△ 中, ,

  ,

  在Rt△ 中, ,

  24.解:过 作 于 ,则 .

  因为 , 300 m,

  所以 300( -1) 即热气球的升空点 与着火点 的距离为300( -1)

  25.解:如图①,若△ 是锐角三角形,则有 .证明如下:

  过点 作 ,垂足为 ,设 为 ,则有 .

  根据勾股定理,得 ,即 .

  .

  ∵ , , .

  如图②,若△ 是钝角三角形, 为钝角,则有 . 证明如下:

  过点 作 ,交 的延长线于 .

  设 为 ,则有 ,根据勾股定理,得 .

  即 .

【直角三角形测试题】相关文章:

1.一定是直角三角形吗说课稿

2.《解直角三角形》教学反思范文

3.解直角三角形的说课稿

4.《直角三角形的边角关系》数学教学反思

5.数学直角三角形的练习题

6.《解直角三角形的应用》说课稿

7.直角三角形复习的教学设计

8.数学解直角三角形单元试题


本文来源https://www.010zaixian.com/shiti/2839371.htm
以上内容来自互联网,请自行判断内容的正确性。若本站收录的信息无意侵犯了贵司版权,请给我们来信(zaixianzuowenhezi@gmail.com),我们会及时处理和回复,谢谢.