(一)教材的地位和作用
从数学自身的发展过程看,变量和函数的引入标志着数学从初等数学向变量数学的迈进。而一次函数是初中阶段研究的第一个函数,它的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习都奠定了基础。同时,在整个初中阶段,一元一次方程、一元一次不等式都存在于一次函数中。三者相互依存,紧密联系,也为方程、不等式、函数解法的补充提供了新的途径。
(二)教学目标
1.知识目标
(1)理解一次函数和正比例函数的概念,以及它们之间的关系。
(2)能根据所给条件写出简单的一次函数表达式。
2.能力目标
(1)经历一般规律的探索过程、发展学生的抽象思维能力。
(2)通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。
3.情感目标
(1)通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。
(2)经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。
(三)教材重点、难点
1、重点
(1)一次函数、正比例函数的概念及关系。
(2)根据具体情境所给的信息确定一次函数的表达式
2、难点
根据具体情境所给的信息确定一次函数的表达式
接下来我来谈谈第二方面:教法与学法:
在本节课的教学中我准备采用的教学方法主要是指导——自学方式。根据学生的理解能力和生理特征,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上,另一方面要创造条件和机会,让学生发表意见,发挥学生的主动性。通过本节课的学习,教给学生从特殊到一般的认知规律去发现问题的解决方法,培养学生独立思考的能力和解决问题的能力。
下面是我说课的`重点,也就是教学过程的设计、整节课我共设为四个环节:
第一个环节是创设问题,引领导入:
这一环节我通过设置两个问题引导学生概括出一次函数的概念。
问题1:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。
(1)计算所挂物体的质量分别为1千克、2千克、3千克、4千克、5千克时弹簧的长度,并填入下表:
x/千克 0 1 2 3 4 5
y/厘米 3 3.5 4 4.5 5 5.5
(2)你能写出x与y之间的关系式吗?
这一环节让学生带着问题去研究,找出函数和变量之间的关系,计算出对应值。但是让学生写出x与y之间的关系式有一定的难度,学生出现一定的差异在所难免,教学中应该给予学生一定的思考空间,组织学生进行小组交流,教师适当点拨,不要简单地“告诉”。学生经过交流讨论会得出y=0.5x+3。
问题2:某辆汽车油箱中原有汽油100升,汽车每行驶50千克耗油9升。
(1)完成下表:
汽车行驶路程x/千米 0 50 100 150 200 300
油箱剩余油量y/升
你能写出x与y之间的关系吗?(y=100-0.18x或y=100- x)
这一问题让学生自主完成,对有困难的学生,教师适当给予帮助指导。
通过对上面两个问题的研究概括出一次函数的概念。发现两个函数关系式为y=0.5x+3,y=100-0.18x,都是左边是因变量y,右边是含自变量x的代数式。并且自变量和因变量的指数都是一次。若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。
第二个环节是例题讲解
这一环节我设计两个例题,在理解一次函数和正比例函数的概念的基础上,根据x与y之间的关系式区分一次函数和正比例函数,并能根据所给条件写出简单的一次函数表达式。
例1:写出下列各题中x与y之间的关系式,并判断,y是否为x的一次函数?是否为正比例函数?
①汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;
②圆的面积y(厘米2)与它的半径x(厘米)之间的关系;
③一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米)
学生根据已有的知识经验写出x与y之间的关系式,并在对一次函数和正比例函数概念掌握的基础上判断分析(1)y=60x,y是x的一次函数,也是x的正比例函数;(2)y=πx2,y不是x的正比例函数,也不是x的一次函数;(3)y=50+2x,y是x的一次函数,但不是x的正比例函数。
例2:我国现行个人工资薪金税征收办法规定:月收入低于1600元的部分不收税,月收入超过1600元但低于2100元的部分征收5%的所得税……如某人某月收入1960元,他应缴个人工资薪金所得税为(1960-1600)×5%=18(元)
①当月收入大于1600元而又小于2100元时,写出应缴所得税y(元)与月收入x(元)之间的关系式。
②某人某月收入为1760元,他应缴所得税多少元?
③如果某人本月缴所得税19.2元,那么此人本月工资薪金是多少元?
根据所给条件写出简单的一次函数表达式是本节课的重点有事难点,所以在解决这一问题时及时引导学生总结学习体会,教给学生掌握“从特殊到一般”的认识规律中发现问题的方法。类比出一次函数关系式的一般式的求法,以此突破教学难点。在学习过程中,教师巡视并予以个别指导,关注学生的个体发展。
经学生分析:
(1)当月收入大于1600元而小于2100元时,y=0.05×(x-1600);
(2)当x=1760时,y=0.05×(1760-1600)=8(元);
(3)设此人本月工资、薪金是x元,则19.2=0.05×(x-1600)
X=1984
第三个环节是课堂练习
通过以上环节的学习,学生对本课知识应已能基本掌握,要让学生真正理解、准确运用,还是需要进行适量的训练,因此我安排了教材第184页第1、2题这样的练习,并将根据学生课堂上掌握的实际情况,适当补充有关练习,尤其是针对学生可能出问题,如:
1、见下表:
x -2 -1 0 1 2 ……
y -5 -2 1 4 7 ……
根据上表写出y与x之间的关系式是:________________,y是否为x一的次函数?y是否为x有正比例函数?
2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。设每户每月用水量为x米3,应缴水费y元。(1)写出每月用水量不超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。(2)已知某户5月份的用水量为8米3,求该用户5月份的水费。[①y=0.6x,y=x-2.4,y是x的一次函数。②y=8-2.4=5.6(元)]
第四个环节是课后小节
引导学生回忆一次函数、正比例函数的概念及关系。并能根据已知简单信息,写出一次函数的表达式。
现在我谈一下本课的板书设计,
一次函数
1、y=0.5x+3 1、y=60x 1、y=0.05×(x-1600)
2、y=100-0.18x 2、y=πx2 2、 y=0.05×(1760-1600)=8(元)
y=kx+b(k,b为常数k≠0) 3、y=50+2x 3、19.2=0.05×(x-1600)
当b=0时,称y是x的正比例函数 x=1984
【《一次函数》说课稿设计】相关文章:
1.一次函数说课稿
6.一次函数的说课稿
本文来源:https://www.010zaixian.com/yuwen/shuokegao/2590462.htm