《三角形面积的计算》这一节,是以上一节课所学的“平行四边形面积计算公式”的推导方法为基础,应用“转化”思想让学生动手操作,归纳推理,从而得出三角形面积的计算公式。从课本中的推导过程看:把两个完全一样的三角形与拼成一个已学过的图形(平行四边形),再找出其中一个三角形与拼成的图形之间的内在关系,得出了三角形面积的计算公式,这无疑是一种好方法,便于学生理解和掌握。我按照课本的思路,在探究三角形面积计算时,让学生用书后面剪下的几对完全一样的三角形进行探究,再进行班级交流。学生用两个完全一样的三角形拼出了平行四边形,用平行四边形的面积公式轻松地推导出三角形的面积公式:S=ah÷2。从表面上看,学生动手操作了,实际上学生只是被老师牵着鼻子走。学生没有主动地思考,没有猜想和创造。对于“为什么会想用两个完全一样的三角形来拼?还有其他推导方法吗?”没有思考。课后我认为这样的操作是肤浅的,没有起到促进学生建构知识的作用,不利于展现知识的生成过程,缺失了学生主动寻找材料的过程,影响学生解决问题策略意识的培养。
我想时间如果能回到上节课,我将会引导学生自己寻找方法推导三角形的面积计算公式。看看能否有多种新颖的、学生自己发现的方法出现。如果是学生自己想办法探索发现的三角形的面积计算方法,他们对三角形面积的计算方法的理解将会非常深刻。这种不依靠教师暗示、授意的探究,是真正意义上的探究。在这种真正意义的探究中,学生经历了主动建构的过程,这才是有价值的探究。
本文来源:https://www.010zaixian.com/yuwen/jiaoxuefansi/590478.htm