欢迎来到010在线作文网!

数学学习计划

实用文 时间:2021-08-31 手机版

【精选】数学学习计划九篇

  人生天地之间,若白驹过隙,忽然而已,我们又将迎来新一轮的学习,迎来新的喜悦、新的收获,该为接下来的学习制定一个学习计划了哦。但是相信很多人都是毫无头绪的状态吧,以下是小编帮大家整理的数学学习计划9篇,仅供参考,希望能够帮助到大家。

数学学习计划 篇1

  期末复习是对自己一学期学习知识的梳理,只有制定合理的期末复习计划,才能更好的进行进行期末复习工作,为大家整理一些关于期末复习计划范文的相关材料,希望对各位朋友的工作和生活有帮助。

  在20xx年7月XX号我们要进行期末考,所以在这还没有一个月里我们要抓紧每一分每一秒的时间。

  细节规划

  学习是用屁股-> 手 -> 脑袋 -> 心的过程。

  第一,一个相对完善的时间表,既要涵盖每月的整体安排,又要包括每月以及每天、每时的细节规划。

  第二,复习计划要留有余地,不要“满打满算”。比如,晚上7点到8点复习数学,8点开始复习英语,这样安排就太紧,当中应该有一个缓冲:7点到8点是数学时间,8点15分以后留给英语。这样,数学复习完后喝口水,稍作休息,不要“连轴转”。

  而且,留有余地也可以确保上一段计划的完成。还是以7点到8点复习数学为例,万一时间到,却还差一道题没做完怎么办?留有15分钟的余地,孩子就可以具体问题具体解决,而不致产生浮躁的情绪。

  第三,教孩子在执行计划时学会放弃。有的学生死心眼儿,比如复习数学时遇到两道难题,卡一个小时也没有思路,却非要做出来不可,一晚上的时间都搭上去。结果,这两道题没有眉目,其他的科目也耽误。孩子的情绪也难免受到影响。对于这样的孩子,家长就需要告诉他,把这两道题放一放,先完成其他科目的计划,最后如果还有剩余时间,再回过头来处理先前的“遗留问题”,如果没有时间就放在明天或后天再做。

  第四,复习计划要兼顾全面。有的考生对喜欢的科目就先复习,不喜欢的科目放在后头;有的考生把自己的强项放在前面复习,弱项的复习受到影响,导致强项越来越强,弱项始终没得到实质性的提高。其实,每个考生都有自己的强项和弱项,正确的做法是优势要强化,劣势也要弥补。

  学习方法

  1、成绩要在较短期内获得较大提高。

  长时间的慢慢提高对大多数科目没有必要,且消磨锐气。要在一定时间段内刻苦投入,在成绩开始提升时加把劲儿,争取在较短时间内大幅提高成绩。

  2、成绩提高用四大件——精华教育学习阶段论实践

  (三)周循环学习法如何实践?

  1、第一步:周日晚上制定周学习计划。

  根据自己总的学习进度,制定一周的目标。根据目标计算周一到周六的学习量,制定可行的、但又必须完成的学习计划。

  2、第二步:周一至周六按计划学习。

  根据计划学习量做好每日时间管理,每日结束前确认一下计划完成度,记录学习日志;

  3、第三步:周日彻底完成学习计划。

  把本周的学习完成情况总结一下。没有完成的部分在周日彻底解决。一周计划都完成,就好好放松一下,然后做下周计划。

  (四)注意事项:

  1、不要做过度的计划,以免产生挫折感,渐渐失去学习兴趣;

  2、要空着周日。因特殊情况而没有完成的计划周日弥补,并休息。

  3、当日未完成的计划不要拖到第二日,要果敢地跳过去。待周日再完成。拖到第二日反而会产生连锁反应而更疲惫。

数学学习计划 篇2

  一、第一阶段复习计划:

  复习高数书上册第一章,需要达到以下目标:

  1、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。

  2、了解函数的有界性、单调性、周期性和奇偶性。

  3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

  4、掌握基本初等函数的性质及其图形,了解初等函数的概念。

  5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。

  6、掌握极限的性质及四则运算法则。

  7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

  8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

  9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

  10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

  本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。

二、第二阶段复习计划:

  复习高数书上册第二章1—3节,需达到以下目标:

  1、理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

  2。掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

  3、了解高阶导数的概念,会求简单函数的高阶导数。

  本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。

三、第三阶段复习计划:

  复习高数书上册第二章 4—5节,第三章1—5节。需达到以下目标:

  1、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。

  2、理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理。

  3、掌握用洛必达法则求未定式极限的方法。

  4、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。

  5、会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

  本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。

四、第四阶段复习计划

  复习高数书上册第四章 第1—3节。需达到以下目标:

  1、理解原函数的概念,理解不定积分的概念。

  2、掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法。会求简单函数的不定积分。

  本周主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。

五、第五阶段复习计划

  复习高数书上册第五章第1—3节。达到以下目标:

  1、理解定积分的几何意义。

  2、掌握定积分的性质及定积分中值定理。

  3、掌握定积分换元积分法与定积分广义换元法。

  本周的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。

六、第六阶段复习计划

  复习高数书上册第五章第4节,第六章第2节。达到以下目标:

  1、掌握积分上限的函数,会求它的导数,掌握牛顿—莱布尼茨公式。

  2、掌握定积分换元法与定积分广义换元法。 会求分段函数的定积分。

  3、掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。


本文来源https://www.010zaixian.com/shiyongwen/3642814.htm
以上内容来自互联网,请自行判断内容的正确性。若本站收录的信息无意侵犯了贵司版权,请给我们来信(zaixianzuowenhezi@gmail.com),我们会及时处理和回复,谢谢.