数学教学计划汇编五篇
光阴如水,老师们的教学工作又将有新的目标,立即行动起来写一份教学计划吧。为了让您不再有写不出教学计划的苦闷,以下是小编为大家收集的数学教学计划5篇,仅供参考,希望能够帮助到大家。
数学教学计划 篇1
教材分析
本册教材包括下面一些内容:小数的意义与性质,小数的加法和减法,四则运算,运算定律与简便计算,三角形,位置与方向,折线统计图,数学广角和数学综合运用活动等。在数与计算方面,本教材安排了小数的意义与性质,小数的加法和减法,四则运算,运算定律与简便运算。小数在日常生活中有着广泛的应用,有关小数概念的知识和小数四则运算能力是小学生应该掌握和形成的基础知识和基本能力。学生在第一学段已经认识了简单的小数,会计算一位小数的加减法,在本学期里学生将系统地学习小数的意义和性质、小数大小的比较、小数点位置的移动引起小数大小的变化等,并在此基础上学习比较复杂的小数的加法和减法。使学生很好地理解小数的意义,能用小数来表达和交流信息,初步学习用小数知识解决问题。在空间与图形方面,本册教材安排了位置与方向、三角形两个单元,这些都是本册的难点或重点教学内容。在已有知识和经验的基础上,通过丰富的数学活动,让学生进一步认识三角形的特性,进一步了解确定位置的方法。
在统计知识方面,本册教材安排了折线统计图。让学生学习根据统计表中的数据制作单式折线统计图,学会看懂此种统计图并学习根据统计图和数据进行数据变化趋势的分析,进一步体会统计在现实生活中的作用,形成统计的观念。
在用数学解决问题方面,教材一方面结合计算内容,教学用所学的整数四则运算知识和小数加减法知识解决生活中的简单问题;另一方面,安排了数学广角的教学内容,引导学生通过观察、猜测、实验、推理等活动,初步体会植树问题的数学思想方法,感受数学的魅力。
教学目标
1.理解小数的意义和性质,体会小数在日常生活中的应用,进一步发展数感,掌握小数点位置移动引起小数大小变化的规律,掌握小数的加法和减法。
2.掌握四则混合运算的运算顺序,会进行简单的整数四则混合运算;探索和理解加法和乘法的运算定律,会应用它们进行一些简便运算,进一步提高计算能力。
3.认识三角形的特性,会根据三角形的边、角特点给三角形分类,知道三角形任意两边之和大于第三边以及三角形的内角和是180°。
4.初步掌握确定物体位置的方法,能根据方向和距离确定物体的位置,能描述简单的路线图。
数学教学计划 篇2
教学内容
分析 义教课标实验教科书六年级下册P13—14页,例3、4。
本节课的教学内容是在学生认识掌握圆柱基本的特征,进而在理解的基础上掌握圆柱的侧面积、表面积的计算方法。教材是在学生掌握长方形面积、圆的周长和面积计算方法的基础上安排的,因而要以上述知识为基础,运用转化、迁移的方法理解和掌握圆柱体的侧面积、表面积的计算方法,并且能运用这一知识解决一些简单的实际问题。另外学好这部分内容,可以进一步发展学生的空间观念,为以后学习其它几何形体打下坚实的基础。
教学目标
1、理解圆柱的表面积的含义。
2、探索并掌握圆柱侧面积和表面积的计算方法。
3、会正确计算圆柱的侧面积和表面积。
教学重难点 教学重点:
理解圆柱的表面积的含义。
教学难点:探索并掌握圆柱侧面积和表面积的计算方法。会正确计算圆柱的侧面积和表面积。
教具学具准备 圆柱体的瓶子、剪子、圆柱的模型等。
教学设计思路
本课由于概念抽象,知识难懂,易使部分学生感到枯燥无味甚至越听越迷糊。我根据学生由感知——表象——抽象的认识规律和教学的启发性、直观性等教学原则,采用多媒体辅助教学,以引导法为主,辅之以实物演示法、设疑激趣法、讨论法等,让学生全面、全程的参与教学的每一个环节,充分调动学生学习的积极性,培养学生的观察力、动手操作能力和想象力,发展学生的空间观念,总结出圆柱的侧面积、表面积的计算方法。
教学环节 教学内容与教师活动 学生活动
设计意图
一、创设情境,提出问题
二、自主学习,合作探究
三、汇报交流,评价质疑
一、创设情境,提出问题
拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?想一想工人叔叔做这个茶叶罐是怎样下料的?
那么大家猜猜侧面是怎样做成的呢?
二、自主学习,合作探究
研究圆柱侧面积:
1.独立操作:利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。
2.观察对比:观察展开的图形各部分与圆柱体有什么关系?
3.小组交流:能用已有的知识计算它的面积吗?
4.小组汇报。 (选出一个学生已经展开的图形贴到黑板上)
三、汇报交流,评价质疑
重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)w
这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
长方形的面积=圆柱的侧面积即 长×宽 =底面周长×高,所以,
圆柱的侧面积=底面周长×高
S 侧 == C × h
如果已知底面半径为r,圆柱的侧面积公式也可以写成:
S侧=2πr×h
如果圆柱展开是平行四边形,是否也适用呢?
研究圆柱表面积:
1.现在请大家试着求出这个圆柱体茶叶罐用料多少。
给出数据:高10厘米,底面半径是4厘米。
2.圆柱体的表面积怎样求呢?
得出结论:圆柱的表面积 = 圆柱的侧面积+底面积×2
做两个圆形的底面再加一个侧面
(说说自己的猜想)
上节课已经学习过圆柱侧面展开图的初步知识,但没有细致研究侧面展开长方形与圆柱高及底面的关系。在本节课,通过小组合作来共同研究。
动手操作,动笔验证,得出了同样适用的结论。(因为刚才是用自己喜欢的方式剪开的,所以可能出现种种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)
小组观察讨论:侧面展开的长方形的长是圆柱底面的周长,侧面展开长方形的宽是圆柱的高。
理解长方形与圆柱的关系后,在老师引导下推导出圆柱侧面积计算公式,
并试着推导和理解圆柱表面积计算公式。
计算表面积。
教学环节 教学内容与教师活动 学生活动 设计意图
四、抽象概括,提炼升华
五、拓展应用,巩固提高
四、抽象概括,提炼升华
4、教师出示例题4:一顶厨师帽,高 28cm,帽顶直径 20cm,做这样一顶帽子至少需要用多少面料?(得数保留整十平方厘米。)
这道题目已知什么,要求什么?你觉得该怎样求?
要计算做这个帽子需要用多少面料,我们可以用求解圆柱体面积的方法得到,那么,应该分哪几步?
指定两名学生板演,其他学生独立进行计算。行间巡视,注意察看最后的得数是否计算正确。
指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五人法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近似值的方法叫做进一法。
小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。
五、拓展应用,巩固提高
1.填空。
圆柱的侧面沿着高展开可能是( )形,也可能是( )形。第二种情况是因为( )。
2.要求一个圆柱的表面积,一般需要知道哪些条件( )。
4.教材第六页试一试。
分组讨论:是求圆柱形的表面积,但是需要少算一个底面的面积)
独立完成。
做完后,集体订正。
理解实际生活中计算圆柱表面积的几种情况:有时需要计算三个面,有时只需计算一个底面和侧面的面积。
要视情况而定。
完成练习。
巩固所学。
作业设计(可附页)
一、 填空题
1.用一张长4.5分米,宽2分米的长方形纸,围成一个圆柱形纸筒,它的侧面积是()。
2.用一张边长是20厘米的正方形铁皮,围成一个圆柱体,这个圆柱体的侧面积是( )。
3.直圆柱的底面周长6.28分米,高1分米,它的侧面积是( )平方分米。(π取3.14)。
二、 应用题
1.用一张长 2.5米,宽 1.5米的铁皮做一个圆柱形烟筒,这个烟筒的侧面积是多少?(接口处忽略不计)
2.一个无盖的圆柱形铁皮水桶,高50厘米,底面直径30厘米,做这个水桶大约需用多少铁皮?(π取3.14。得数保留整数)
个人调整意见
板书设计
长方形面积= 长 ×宽
圆柱侧面积=底面周长×高
S = 2∏r ×h
圆柱的表面积
长方形 长 宽
圆柱侧面底面 周长 高
本文来源:https://www.010zaixian.com/shiyongwen/3443184.htm