【题目】一艘船在流速为每小时1000米左右的河上逆流而上,行至中午12点整,有一乘客的帽子落到了河里。乘客请求船老大返回追赶帽子,这时船已经开到离帽子 100米远的上游。已知在静水中这只船的`船速为每分钟20米。假设不计掉头时间,马上开始追赶帽子,问追回帽子应该是几点几分?
【思路】在静水中这只船的船速为每分钟20米-----可知静水船速为每小时1200米,又有条件水速为每小时1000米,那么该船逆水速度为 1200-1000=200米,同时可知该船的顺水速为1200+1000=2200米;由条件12时帽子落水至船离帽子100米,这一段实为反向而行, 这段时间为:100÷(200+1000)=1/12小时=5分,而后一段实为追及问题,这段时间为:100÷(2200-1000)=1/12小时=5 分;两者相加,即为离开12时的时间10分,所以追回帽子应该是12点10分.
【详解】 船静水时速:20×60=1200米
船逆水时速:1200-1000=200米
船顺水时速:1200+1000=2200米
帽子落水至离开帽子100米的时间:100÷(2200-1000)=1/12小时=5分
船追上帽子的时间,即为追及时间:100÷(2200-1000)=1/12小时=5分
离12时帽子落水总时间为:5+5=10分
答:追回帽子应该是12点10分.
【有言】解流水问题关键是:静水速度(船速)、水速、顺水速度、逆水速度这几个概念要理解,顺水速度=船速+水速、逆水速度=船速-水速 这两个公式要牢记,相信只要随时关心这些,其实流水问题并不是什么问题。
【五年级奥数试题及解析:流水问题】相关文章:
本文来源:https://www.010zaixian.com/shiti/2689224.htm