教学目标
1.了解的概念,会求有理数的;
2.会利用比较两个负数的大小;
3.在概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力.
教学建议
一、重点、难点分析
概念 既是本节的教学重点又是教学难点 。关于的概念,需要明确的是无论是的几何定义,还是的代数定义,都揭示了的一个重要性质——非负性,也就是说,任何一个有理数的都是非负数,即无论a取任意有理数,都有 。
教材上的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及,通过数轴,这些知识都联系在一起了。此外,0的是0,从几何定义出发,就十分容易理解了。
二、知识结构
的定义 的表示方法 用比较有理数的大小
三、教法建议
用语言叙述的定义,用解析式的形式给出的定义,或利用数轴定义,从理论上讲都是可以的.初学用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示的定义,即
在教学中,只能突出一种定义,否则容易引起混乱.可以把利用数轴给出的定义作为的一种直观解释.
此外,要反复提醒学生:一个有理数的不能是负数,但不能说一定是正数.“非负数”的概念视学生的情况,逐步渗透,逐步提出.
四、有关的一些内容
1.的代数定义
一个正数的是它本身;一个负数的是它的相反数;零的是零.
2.的几何定义
在数轴上表示一个数的'点离开原点的距离,叫做这个数的.
3.的主要性质
(2)一个实数的是一个非负数,即|a|≥0,因此,在实数范围内,最小的数是零.
(4)两个相反数的相等.
五、运用比较有理数的大小
1.两个负数大小的比较,因为两个负数在数轴上的位置关系是:较大的负数一定在较小的负数左边,所以,两个负数,大的反而小.
比较两个负数的方法步骤是:
(1)先分别求出两个负数的;
(2)比较这两个的大小;
(3)根据“两个负数,大的反而小”作出正确的判断.
2.两个正数大小的比较,与小学学习的方法一致,大的较大.
【《绝对值》教案模板】相关文章:
5.绝对值说课稿课件
6.绝对值说课稿
7.《绝对值》说课稿
本文来源:https://www.010zaixian.com/jiaoan/2170314.htm