一、教学内容
转化是解决问题的常用策略。转化能把新颖的问题变成已经认识、已能解决的问题,从而创造性地利用已有的知识、经验。转化能把复杂的问题变成较简单的问题,从而便捷地找到问题的答案。本单元教学转化策略。
学生在过去的数学学习中经常进行转化,已经积累了关于转化的体验。本单元深入体验转化,用于解决实际问题。编排2道例题、一个练习,把教学分成两段进行。
例1,回顾以前进行的转化,从策略层面上认识它,体会转化的价值。
例2,利用已有分率进行推理,转化较复杂的分数问题,发展思维的开放性和灵活性。
二、教材编写特点和教学建议
1.让学生体会转化,感悟策略。
策略是在解决问题的活动中逐渐形成的,再认解决问题的过程,体验其中的思想方法是形成策略的有效途径。学生曾经进行过许多转化,是感悟策略的宝贵资源,本单元从回顾以前进行的转化开始,例1的教学分三步进行。
利用图形的直观作用引发转化。方格纸上呈现两个形状不同的图形,不容易直接看出面积是否相等。学生会想到把两个图形都转化成长方形,再比较面积的大小。其中一个图形平移它的一部分,另一个图形旋转它的两小块,转化成的两个长方形长相等、宽也相等,面积肯定相等。这个问题利用直观情境让学生主动转化,初步体会转化有助于解决问题。
回忆曾经进行过的转化,体会转化是一种策略。教材指出转化是策略,让学生回忆曾经运用转化策略解决的问题,进一步体验转化。第72页列举了推导面积公式时转化,计算小数乘法、分数除法时转化,这些仅是曾经进行过的一部分转化,学生还能说出许多。教学时要让学生充分回忆,简要说说怎样转化的,转化有什么好处,达到体验转化的目的。
有意识地应用转化解决问题。试一试计算四个异分母分数的加法,数形结合,把原式转化成1-,能很快说出得数。练一练计算多边形周长,在图形启发下转化成求长方形周长的问题,实现了化繁为简。通过这两个问题的解答,再让学生说说解题策略,不仅深刻体会了转化,还能产生积极的情感体验。
2.指导学生转化稍复杂的分数问题。
例2是较复杂的分数问题,在本册教材第一单元里,这样的问题要列方程解答。通过转化,能很容易地列式计算。
本单元转化分数问题,目的在于让学生体会化繁为简,增强策略意识。同时,更好地理解分数的意义及相关的概念,发展推理能力。并不要求学生掌握转化复杂分数问题的技巧,更不要求他们独立进行转化。例2以及练习十四里的分数问题,都是教材指点下的学生转化。。
用原有的方法解题。教学例2,先让学生列方程解答,这是旧知识。用原有方法解题有两个目的,一是熟悉题目里的`数量关系,理解题中的分数的意义,为转化作准备。二是感受原来的解题比较麻烦,转化后的解题十分方便,为比较解法作准备。
指出转化的方向。教材说:如果把男生人数是女生的转化成女生人数是美术组总人数的几分之几,就可以直接用乘法计算。在这句话里提出了转化,指出了方向,要通过转化题目里的分数,使题目变成简单的分数乘法问题。教学时应该让学生仔细阅读这句话,明白把已有的那个分数转化成什么分数,解释为什么转化后就可以直接用乘法计算。
学生联系已有经验进行转化。转化要应用概念进行推理,对现有的信息进行深度开发,创造出新的有价值的信息。把男生人数是女生的转化成女生人数是总人数的几分之几,是进一步沟通男生人数、女生人数、总人数三者的倍数关系。由于分数与除法、比都有联系,因而学生转化的思路必定是多样的,而最终的结论是一致的。
解答转化后的问题。得出女生人数是美术组总人数的,求女生人数就很方便了,因为原来的题被转化成求一个数的几分之几是多少的乘法问题了。让学生列式计算,能感受方便,从而又一次体会转化对解决问题的作用。
需要再次指出的是,练习中的分数问题也是在教材指点下的学生转化。呈现图形直观,填写应联想的分数,降低了转化的坡度。学生只要在教材提供的条件下通过推理实现转化。
【数学教案解决问题的策略】相关文章:
本文来源:https://www.010zaixian.com/jiaoan/2071250.htm