北师大版小学三年级下册数学教学计划-数学教学计划
一、教材分析:
(1)小数的初步认识
第一单元“元、角、分与小数”是学生第一次认识小数,扩展了数及其应用的范围。第一课“买文具”,结合购物的情境初步认识生活中的小数,初步建立小数概念。在“买文具”时,会看到文具标价牌上用小数表示它们的价格,从而自然地引入小数;经历把这些表示价格的小数改写为几元几角几分、再把几元几角几分改写为小数表示的过程,初步理解小数的具体意义,体会小数与它所表示的实际的量的单位之间的联系,体会小数的特征,并会认、读、写简单的小数。
第二课“货比三家”,要建立小数大小的初步认识。在解决“去哪个文具店买铅笔盒便宜”的过程中,能够结合学生自己的购物经验,交流比较两个小数(价格)大小的多种方法:既可以把两个小数都改写为几元几角后比较它们的大小;也可以找到一个适当的整数为中介,通过它间接地比较两个小数的大小。切忌把成人认为更简单的方法强加给学生,更简单的方法可能也更理性、更抽象,容易造成学生死记硬背、机械学习的不良后果;如果更简单的方法是学生自己发现的,那应该鼓励。在进一步“提出哪些数学问题”的过程中,学生很可能提出“去哪个文具店买橡皮便宜”的问题,它涉及到比较3个小数的大小,要找出其中最小的一个,更具有挑战性。这个问题应让学生自己去尝试解答;然后再引导他们体会把复杂问题转化为简单问题来解决的策略,即先比较其中两个数的大小;再拿其中较小的数与第三个数比较,就能找出最小的小数。经历这个解决问题的过程,也是体验进行有条理地数学思考的过程。
第三课“买书”与第四课“寄书”的问题情境,是为理解一位小数加减运算的意义及算法而创设的。前后这两节课的区别在于,前者学的是一位小数的没有进位的加法与没有退位的减法,后者学的是一位小数的进位加法与退位减法;这两节课都把探讨小数加法的算法作为重点,让学生在理解并掌握小数加法算法的基础上,独立去解决小数减法的算法问题。理解并掌握小数加减法的关键环节是经历小数加减的竖式算法的抽象过程,理解其中小数点一定要对齐是由于单位相同的数值才能加减的缘故;小数点对齐的本质就是数位对齐,把小数点对齐,小数加减的竖式计算就类似于学生已经熟悉的多位数加减的竖式计算。学生必须体会这一点,那么,小数加减法便可以融合到学生整数加减法已有的经验之中,学生对小数加减法不但不再感到陌生或负担,而且能体会到知识之间的融会贯通。这样的学习才是有意义的。
(2)平移、旋转和对称
第二单元“对称、平移和旋转”把生活中常见的平移、旋转和对称现象作为学习与研究的对象,从运动变化的角度认识空间与图形,是发展学生空间观念的重要内容。第一课“对称图形”,让学生先观察、欣赏民间剪纸的艺术作品,再经历“折一折、剪一剪”“猜一猜、剪一剪”等操作活动,逐步感知什么是对称图形及其对称轴;进而在直观辨认图形是否是对称图形的分类活动中,进一步体验对称图形的基本特征;让学生在方格纸(钉子板)上画(围)出对称图形,用几种基本图形进行组合,摆出(构成)对称图形,从而初步形成对称图形的概念。
第二课“镜子中的数学”,向学生呈现生活中有趣的镜面对称现象,激发他们强烈的兴趣和好奇心,发展他们的空间知觉。第18页练习第1题“从镜子中看到的左边图形的样子是什么?”并给出3个答案供选择,很有挑战性;其实这3种答案都有可能,取决于镜子放在适当的位置。经历这样的空间位置与图形的探索,空间观念是会大有长进的。
第三课“平移和旋转”,首先结合生活中具体的实例,如缆车沿笔直的索道滑行、国旗沿着旗竿徐徐上升、直升飞机起飞时的机翼运动、小风车迎风旋转等来感知平移和旋转现象;进而通过区分物体的平移和旋转两类运动,描述见过的平移或旋转运动等学习活动,以丰富关于平移和旋转的感性认识;并要求学生“试着做一个表示平移和旋转的动作”,获得体验。在这个基础上进一步认识平移,让学生观察在方格纸上简单图形平移前后的位置,通过“移一移”“说一说”“填一填”“画一画”等操作与交流活动,去逐步感悟这样一个道理:要确定图形平移后的位置,不仅需要知道图形平移的方向(上、下、左、右)还要知道平移的距离(几格)。平移的方向和距离是平移的两个基本要素,要引导学生去体验它,但不能也不必要把它归纳成知识点强加给学生们。
第四课“欣赏与设计”,通过欣赏与设计图案的活动,感受图案的美,体会平移、旋转与对称在创作图案中的应用,为学生展示丰富的想像力与创造力提供机会,获得创作图案的初步经验和体验。
(3)关于两位数与两位数的乘法
第三单元“乘法”是在学生已经掌握了表内乘法、两位数乘一位数等算法的基础上进一步学习乘法的。第一课“找规律”,让学生通过计算,探索发现两数相乘当其中一个因数不变另一个因数扩大10倍时积的变化规律;掌握这一规律,两个整十数的乘法就能口算得出结果。在发现规律之前,计算12×40,120×40对于学生来说是有挑战性的,他们要把这些算式转化成熟悉的形式:12×40=12×5×8=?120×40=60×2×40=60×80=?从中应让学生体会到化未知为已知的重要的数学思想方法,而式子的变形是实现这种转化的重要手段。
第二课“整理书”,结合“整理书”的问题情境,学习两位数乘两位数没有进位的乘法。首先让学生估算,培养学生对数量关系的直觉能力,回答“200本放得下吗?”再探索精确计算的各种算法,交流各自算法的过程,比较各种算法的特点,体验算法的多样化和灵活性;学生可以选择适合自己的算法,但必须掌握它。两位数乘一位数的竖式乘法是两位数乘两位数竖式乘法的基础,必须让学生体会这两者的联系与区别,理解每一层计算的含义。
本文来源:https://www.010zaixian.com/zuowen/fannao/3515414.htm