一、 学情分析
1、教材分析:
浙教版小学数学第十册第一单元《长方体和立方体的表面积》是本单元的第三课时。“长方体和正方体”这一单元是学生系统学习立体图形知识的开始,本课时主要教学长方体、正方体表面积的概念和计算方法。教材先通过把一个长方体或正方体纸盒的6个面展开,帮助学生认识表面积的概念。这样可以把表面积的概念与刚刚建立起来的长方体和正方体的特征很好的联系起来,为下面学习计算表面积做好准备。接着,通过例1教学长方体表面积的计算方法。然后安排“试一试”学习立方体表面积的计算方法。
关于长方体表面积的计算,教材中没有给出计算公式,而是启发学生用不同的方法列式计算,这样安排有利于他们更好的掌握表面积的概念及有关计算,有利于更好的发展学生的空间观念。
2、学习者分析:
长方体和正方体的表面积这部分知识是在学生掌握了长方形与正方形的面积计算,并对长方体与正方体的特征有了初步认识的基础上进行教学的,即学生已经明确了长方体与正方体都有6个面,而且长方体相对的面的面积相等,正方体6个面的面积都相等的基础上教学的。计算长方体和正方体的表面积在生活中有广泛的应用。通过这部分内容的学习,还可以加深学生对长方体和正方体特征的的理解,发展他们的空间观念。
二、教学目标及重难点
教学目标:
1、理解长方体和正方体表面积的意义。
2、理解并掌握长方体和正方体表面积的计算方法。
3、培养和发展学生的空间观念。
教学重点:
长方体、正方体表面积的意义和计算方法。
教学难点:
确定长方体每一个面的长和宽。
三、教学设想
1、创设问题情景,激发学习欲望。
根据本课教材的特点和学生实际,新课伊始,我创设了“纸箱厂要制作一种长8分米,宽2分米,高4分米的长方体包装盒和一种棱长4分米的正方体包装盒.哪种包装盒要用的硬纸板少?”这一问题情景,接着问:“长方体和正方体的哪些地方要用硬纸板?”既激发了学生探究的兴趣,又对“长方体或正方体的表面积”这一概念建立清晰的表象,为学习表面积的计算方法做好充分准备。
2、借助教学媒体,提高学习有效性。
“长方体和正方体”这一单元是学生系统学习立体图形知识的开始,因此在教学中尽可能丰富他们的感性认识,建立清晰的表象。我通过提问“这个长方体的表面积能一眼全看到吗?有什么办法能一眼全看到?”引导学生思考把立体图形得到平面图形。之后由多媒体电脑演示展开过程,要求学生在展开后的图形中找到“上下前后左右”6个面。强化空间观念,增加学习趣味。
在此基础上“提问”:每个面的长和宽与长方体的长、宽、高有什么关系?让学生围绕本课难点问题进行尝试解决问题,而教师只在关键处进行点拨、引导。体现学生的主体地位,培养学生独立解决问题的能力。学生通过自主探索,自己发现长方体表面积的计算方法。但由于学生的认知水平有差异,允许各类学生提出自己的方法,然后通过比较,进而到表面积计算的一般方法,这样可以有意识地结合教学内容体现思维方法,使学生认识到学数学要抓住解题关键,受到恰当的思维训练。
3、适当应用拓展,发展空间观念。
学生在上面问题的`解决中都有是凭借实物来完成的,练习部分我先安排了一组判断题,在第三小题中,学生思维的常规得到打破,相对于独立物体而言的,那么对于组合物体表面积又是怎样的呢?我将更多的时间与思考空间留给了学生自己思考,让新知得到了进一步的深化。然后,第二大题安排了看数字算面积的练习,与看图算面积想比较,使学生的思维从具体形象思维向抽象逻辑思维过度。可无论是包装盒实物,还是具体图形、或只是数据的表面积计算,解决的都是6个完整的表面积的计算,可实际生活中的也有不是6个面的表面积计算,那么对于不完整的包装面积又该如何计算?我安排了“如此题改为同样尺寸的无盖塑料盒表面积如何求?”其目的是培养学生应用知识灵活解决问题的能力,这里注重培养学生方法的发散,及解题策略的多样化和最优化,培养学生个性。最后,我考虑到学生的认识不能只停留在感知水平上,还要上升到理性认识。在聪明题中,对于组合物体的包装,我将更多的时间留给学生自己思考,他们以小组合作的方式进行比较、交流,解决问题,发现新问题,这样多方面联系,不仅注意发挥学生的主体地位,还给他们创造了合作的空间。最后引导学生根据计算结果寻找规律,“重叠面多,图形越接近立方体,表面积越小,鼓励学生进一步用这一规律解释生活中的包装现象,使学生明确:对物体进行包装时,要根据实际情况选择合适的材料,要么使包装美观大方,吸引注意,要么简单小巧,尽可能省纸。从而使学生感知,数学来源于生活,应用于生活,增强数学的应用意识。
【长方体和正方体的表面积说课稿】相关文章:
本文来源:https://www.010zaixian.com/yuwen/shuokegao/2170338.htm