欢迎来到010在线作文网!

第一册已知三角函数值求角教学设计

教学设计 时间:2021-08-31 手机版

  【教学课题】: 已知三角函数值求角

  【教学目标】: 了解反三角函数的定义,掌握用反三角函数值表示给定区间上的角

  【教学重点】: 掌握用反三角函数值表示给定区间上的角

  【教学难点】: 反三角函数的定义

  【教学过程】:

  一. 问题的提出:

  在我们的学习中常遇到知三角函数值求角的情况,如果是特殊值,我们可以立即求出所有的角,如果不是特殊值( ),我们如何表示 呢?相当于 中如何用 来表示 ,这是一个反解 的过程,由此想到求反函数,第一册已知三角函数值求角。但三角函数由于有周期性,它们不存在反函数,这就要求我们把它们的定义域缩小,并且这个区间满足:

  (1)包含锐角;(2)具有单调性;(3)能取得三角函数值域上的所有值。

  显然对 ,这样的区间是 ;对 ,这样的区间是 ;对 ,这样的区间是 ;

  二.新课的引入:

  1.反正弦定义:

  反正弦函数:函数 , 的反函数叫做反正弦函数,记作: .

  对于 注意:

  (1) (相当于原来函数的值域);

  (2) (相当于原来函数的定义域);

  (3) ;

  即: 相当于 内的一个角,这个角的正弦值为 。

  反正弦:符合条件 ( )的角 ,叫做实数 的反正弦,记作: 。其中 , 。

  例如: , , ,

  由此可见:书上的反正弦与反正弦函数是一致的,当然理解了反正弦函数,能使大家更加系统地掌握这部分知识。

  2.反余弦定义:

  反余弦函数:函数 , 的反函数叫做反余弦函数,记作: .

  对于 注意:

  (1) (相当于原来函数的值域);

  (2) (相当于原来函数的定义域);

  (3) ;

  即: 相当于 内的一个角,这个角的余弦值为 。

  反余弦:符合条件 ( )的角 ,叫做实数 的反正弦,记作: 。其中 , 。

  例如: , ,由于 ,故 为负值时, 表示的是钝角。

  3.反正切定义:

  反正切函数:函数 , 的反函数叫做反正弦函数,记作: .

  对于 注意:

  (1) (相当于原来函数的值域);

  (2) (相当于原来函数的定义域);

  (3) ;

  即: 相当于 内的一个角,这个角的正切值为 。

  反正切:符合条件 ( )的角 ,叫做实数 的反正切,记作: 。其中 , 。

  例如: , , ,

  对于反三角函数,大家切记:它们不是三角函数的反函数,需要对定义域加以改进后才能出现反函数,高中数学教案《第一册已知三角函数值求角》。反三角函数的性质,有兴趣的同学可根据互为反函数的函数的图象关于 对称这一特性,得到反三角函数的性质。根据新教材的'要求,这里就不再讲了。

  练习:

  三.课堂练习:

  例1.请说明下列各式的含义:

  (1) ; (2) ; (3) ; (4) 。

  解:(1) 表示 之间的一个角,这个角的正弦值为 ,这个角是 ;

  (2) 表示 之间的一个角,这个角的正弦值为 ,这个角不存在,即 的写法没有意义,与 , 矛盾;

  (3) 表示 之间的一个角,这个角的余弦值为 ,这个角是 ;

  (4) 表示 之间的一个角,这个角的正切值为 。这个角是一个锐角。

  例2.比较大小:(1) 与 ;(2) 与 。

  解:(1)设: , ; , ,

  则 , ,

  ∵ 在 上是增函数, ,

  ∴ ,即 。

  (2) 中 小于零, 表示负锐角,

  中 虽然小于零,但 表示钝角。

  即: 。

  例3.已知: , ,求: 的值。

  解: 正弦值为 的角只有一个,即: ,

  在 中正弦值为 的角还有一个,为钝角,即: ,

  所求 的集合为: 。

  注意:如果题目没有特别说明,结果应为准确值,而不应是近似值,书上均为近似值。

  例4.已知: , ,求: 的值。

  解: 余弦值为 的角只有一个,即: ,

  在 中余弦值为 的角还有一个,为第三象限角,即: ,

  所求 的集合为: 。

  例5.求证: ( )。

  证明:∵ ,∴ ,设 , ,

  则 ,即: ,即: ,

  ∵ ,∴ ,

  ∴ ,∴ ,即: 。

  例6.求证: ( )。

  证明:∵ ,∴ ,设 , ,

  则 ,即: ,即: (*),

  ∵ ,∴ ,

  ∴ ,∴ ,即: 。

  注意:(*)中不能用 来替换 ,虽然符号相同,但 ,不能用反余弦表示 。

  四.课后作业。

  书上:P76.练习,P77. 习题4.11。(均要准确值,划掉书上的精确到)

  第一册已知三角函数值求角

【第一册已知三角函数值求角教学设计】相关文章:

1.已知三角函数值求角教学设计

2.关于对特殊锐角三角函数值的评课稿

3.三角形教学设计

4.《认识三角形》教学设计

5.三角形按角分类课件

6.《用三角板拼角》教案

7.三角对白的散文

8.三角湖公园作文


本文来源https://www.010zaixian.com/yuwen/jiaoxuesheji/2415386.htm
以上内容来自互联网,请自行判断内容的正确性。若本站收录的信息无意侵犯了贵司版权,请给我们来信(zaixianzuowenhezi@gmail.com),我们会及时处理和回复,谢谢.