欢迎来到010在线作文网!

《鸽巢问题》教学设计

教学设计 时间:2021-08-31 手机版

《鸽巢问题》教学设计

教学目标:

  1、知识与技能:初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题或解释相关的现象。

  2、过程与方法:通过操作、观察、比较、说理等数学活动,使学生经历鸽巢原理的形成过程,体会和掌握逻辑推理思想和模型思想。

  3、情感 态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学习数学的兴趣。

教学重点:经历“鸽巢原理”的探究过程,理解鸽巢原理。

教学难点:理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。

教学准备:多媒体课件、铅笔、纸杯、合作探究作业纸。

教学过程:

一、 唤起与生成

  1、谈话:同学们,你们喜欢魔术吗?今天,黄老师给大家表演一个小魔术。一副牌,取出大小王,还剩52张牌,请5个同学每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?来,试试看。

  2、验证: 抽取,统计。是不是凑巧了,再来一次。表演成功!

  3、至少2张是什么意思?(也就是最少2张,最起码2张,反过来,同一花色的可能有2张,也可能是3张、4张、5张...,一句话概括就是至少2张)。

  确定是哪个花色了吗 ?(没有)反正总有一个花色,所以,这个数据不管是在哪个花色出现都证明表演是成功的。

  4、设疑:你们想知道这是为什么吗?其实这里面蕴藏着一个非常有趣的数学原理,这节课让我们一起去发现!

二、探究与解决

  (一)、小组探究:4放3的简单鸽巢问题

  1、出 示:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

  2、审 题:

  ①读题。

  ②从题目上你知道了什么?证明什么?

  (我知道了把4支铅笔放进3个笔筒中,证明不管怎么放,总有一个笔筒里至少有2支铅笔。)

  ③你怎样理解“不管怎么放”、“总有” 、“至少”的意思?

  “不管怎么放”:就是随便放、任意放。

  “总有”: 就是一定有,不确定是哪个笔筒,这个笔筒没有那个笔筒会有。

  “至少”: 就是最少,最起码。至少有2支,就是最少有2支,不能少于2支。也可能是3支、4支、甚至5支。

  3、探 究:

  ①谈 话:看来大家已经理解题目的意思了,眼见为实,就让我们亲自动手摆一摆、放一放,看看有哪几种放法?

  ②活 动:小组活动,四人小组。

  听要求!

  活动要求:每个小组都有笔筒和笔,请四个人中面对面的两人一人扶杯子一人放铅笔,另外两人一人口述一人记录,让我们齐心协力,摆出所有情况后,对照题目,看有什么发现。

  听明白了吗?开始!

  3、反 馈:汇报结果

  同学们办法真多,有用画图法,有用数的分解来表示,都很清晰。谁来汇报一下你们的成果?

  可以在第一个笔筒中放4支铅笔,其他两个空着。这种放法可以说成(4,0,0),(3,1,0),(2,2,0),(2,1,1)(课件逐一出示)

  追 问:谁还有疑问或补充?

  预设:说一说你比他多了哪一种放法?

  (2,1,1)和(1,1,2)是一种方法吗?为什么?)

  只是位置不同,方法相同

  5、验证:观察这4种摆法,凭什么说“总有一个笔筒中至少有2支铅笔”?

  (1)逐一验证:

  第一种摆法(4,0,0),是不是总有一个笔筒至少2支,哪个?放的最多的笔筒里有4支,比2支多也可以吗?

  符合总有一个笔筒里至少有2支铅笔。

  第二种摆法(3,1,0),符合。哪个?放的最多的笔筒里有3支,符合总有一个笔筒里至少有2支铅笔。

  第三种摆法(2,2,0),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。

  第四种摆法(2,1,1),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。

  符合条件的那个笔筒在三个笔筒中都是最多的。

  (2)设疑:我有一个疑问,第一种摆法(4,0,0)放的最多的笔筒里,放有4支,可以说总有一个笔筒至少有4 支铅笔吗?说成3支也不行吗?

  (3)小结:哦,原来是这样,要考虑所有摆法,然后在所有摆法中,圈出每一种摆法中最多的,再从最多的'里面找到至少数,就能得出这个结论。

  所以,把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

  (二)自主探究:5放4的简单鸽巢原理

  1、过 渡:依此推想下去

  2、出 示:把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有( )支铅笔。

  3、猜 想:同学们猜猜看,至少数是几支?(你说、你说)

  4、验 证:你们的猜测对吗?让我们来验证一下。

  活动要求:

  (1)思考有几种摆法?记录下来。

  (2)观察每一种摆法,能不能从中找出答案。有困难的可以同桌合作。

  好,开始。(教师参与其中)。

  5、汇 报:把5支铅笔放进4个笔筒中,共有6种摆法

  分别是:5000 、4100、 3200、 3110 、2200、2111

  (课件同步播放)

  预设:我圈出了每种摆法中,放铅笔最多的那个笔筒,然后发现,放铅笔最多的的笔筒里面至少放有2支铅笔。

  6、订 正:有补充的吗?噢,我们来看,这6种摆法,把每种方法里放的(停顿)最多的铅笔圈出来了,分别是5支、4支、3支、2支,从中找到至少数是2支。

  7、小 结:恭喜答对的同学!同学们可真是厉害!请看,我们研究了这样的两个问题:

  ①把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。会讲为什么。

  ②把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?会求至少数。

  不管是对结论的证明还是求解至少数,我们都采用一一列举的方法,罗列出所有摆法,再通过观察,得出结论。


本文来源https://www.010zaixian.com/yuwen/jiaoxuesheji/2389273.htm
以上内容来自互联网,请自行判断内容的正确性。若本站收录的信息无意侵犯了贵司版权,请给我们来信(zaixianzuowenhezi@gmail.com),我们会及时处理和回复,谢谢.