本节课是在学生学过了求一个数是另一个数的百分之几问题基础上教学的。这种问题实际上还是求一个数是另一个数的百分之几的问题,只是有一个条件题目中没有直接给出,需要根据题里的条件先算出来。解答求比一个数多(少)百分之几的问题,可以加深学生对百分数的认识,提高用百分数解决实际问题的能力。
成功之处:
1.重视解题策略的培养,提高解决问题的能力。
为了帮助学生理解题意,分析数量关系,教材中画出线段图直观表示题目中的数量关系,同时呈现了两种解决问题的方法。一是先求出实际比原计划增加的公顷数,即14-12=2(公顷);再求出增加的公顷数是原计划的百分之几,即2÷12≈16.7%。二是先求出实际造林的公顷数是原计划的百分之几,再把原计划造林的公顷数看作单位“1”或100%。用实际造林的公顷数是原计划的百分之几减去100%,就是实际造林比原计划增加了百分之几。通过两种方法的教学对比,使学生明确解答求比一个数多(少)百分之几的问题的不同解题思路,同时应用线段图加强学生图形结合进行解决问题的能力。
2.重视题目的变式,训练学生灵活解决问题的能力。
在教学例2的问题后进行变式训练,再让学生解答“原计划造林比实际造林少百分之几?”。为防止负迁移,可以提出问题:能不能说原计划造林比实际造林少百分之几的含义是什么?在这里是谁和谁比?使学生明确这道题实际求的是原计划造林比实际造林少的公顷数占实际的百分之几,列式为(14-12)÷14≈14.3%。或者先求出原计划造林是实际的百分之几:12÷14≈85.7%,再把实际造林的公顷数看作“1”,求出原计划造林比实际少百分之几:100%-85.7%=14.3%。通过变式练习,即开拓了学生的解题思路,又可以发展学生的思维能力。
不足之处:
学生对于(14-12)÷14≈14.3%这个算式习惯上用等于号,而不是用约等号。
再教设计:
在教学中要说明(14-12)÷14≈0.143=14.3%,而不是等于14.3%。
本文来源:https://www.010zaixian.com/yuwen/jiaoxuefansi/969244.htm