这节课目的是为了丰富学生对分数的认识,进一步理解分数的意义,清楚的理解分数中“整体”与“部分”的关系。在实际教学中,我根据教材安排的活动,我创设了有趣的情景,设计了精巧的练习让学生在愉悦的环境中对分数进行“再”认识。
一、创设丰富的情景,促进学生对分数的理解。
1、“拿铅笔”。
刚开始,我出示了三幅图,让学生用分数表示涂色的部分,这三幅一分别是平面图形、直线、实物,让学生在回忆中说一说分数的意义。然后让三个学生从三个文具盒里拿出全部铅笔的二分之一,结果他们拿出了不同的数量:四支、三支、四支。
为什么同样是拿出全部的二分之一,数量却又多有少呢?我把这个问题抛给了学生,让他们交流自己的想法。经过大家的讨论,他们明白了“因为整体的数量不同,所以,他们的二分之一的数量也不相同。
2、“说一说”。
为了让学生充分理解,我又安排了“看书”“画图”等活动,让学生们在具体的活动中再一次感受“一个分数所对应的整体不同,所表示的具体数量也不同”的结论,从而加深了他们对分数的认识。这样突出了联系学生的生活实际,激发了学生提出问题,解决问题的欲望,使学生感受分数对应的整体“1”不同,分数所表示的部分的大小或具体数量也就不一样,让学生在具体的情境中感受、理解数学问题。
二、具有挑战性的问题,促进了学生的主动思维。
“为什么同样是拿出全部的二分之一,结果却不一样呢?”这个问题极具挑战性,要想解决这个问题,学生们必须调动自己的一切感官参与学习,他们只有在主动地观察、分析、争论的过程中才能达成共识,解决问题,这无形当中策进了他们的主动思维,提高了他们的学习能力。
在今后的教学中,一定要精心设计问题,通过问题的解决,真正体现学生的自主学习,真正提高学生的综合能力,进而提高学生的数学学习兴趣和成绩。
三、精巧的练习,一题多用,调动了学生的思维和操作能力。
1、一个整体的三分之二是8个圆,那么它的整体可能会是什么图形呢?
让学生感受从部分到整体的一种求解过程,并且理解整体的形状不唯一,但是数量都是12个圆。
2、改变这12个圆的颜色,其中4黄、3蓝、3绿、2红,问:黄色部分占整体的几分之几?激发学生对分数意义的深入理解。平均分的份数不一样,那么表示方法也不一样。
3、在整体12个圆不变的情况下,怎样才能做到使黄圆占整体的六分之五呢?这个题目打破了以往练习的传统思维,学生只能通过自己改变黄圆的个数。来改变分数。但是遗憾的是由于时间的原因,这道题并没有展现出来。
四、教学中不足的地方:
1、学生回答完问题后或者练习完汇报自己的答案后,我应该请其他的同学做小老师进行评价。
2、本节课,在让学生发表自己的收获后,我没有及时利用学生的生成性的发现。导致中间的节奏过慢,影响了整节课的进度。
通过这节赛课活动,我认识到了自己与其他老师之间的差距,相信自己通过这节锻炼,会给我的教学生涯带来很大的、积极的改变。
本文来源:https://www.010zaixian.com/yuwen/jiaoxuefansi/912541.htm