《相遇问题》是五年级解决问题的重点和难点,是在学习了速度、时间和路程的数量关系的基础上进行教学的,由一个物体运动的特点和数量关系为基础来探索两个物体运动的特点和数量关系。本节课我重视引导学生“书本数学”向“生活数学”转变,不断探究解决问题的方法。
一、努力之处
1.数量关系,奠定基础。
现在的数学教材淡化了对数量关系的教学,但是我想相遇问题是涉及路程、速度和时间这三个量的教学,所以在复习环节我加上了对于数量关系的回忆和复习,由于学完时间较长,有半数孩子比较生疏,所以我将以下三个数量关系板书下来,分别是:速度×时间=路程;路程÷速度=时间;路程÷时间=速度,这是学习相遇问题的基础,我加以强调。
2.合作表演,亲身体验。
我通过谈话加以过渡:一般情况下,我们算的路程问题都是向同一个方向走的,那么,想一想,如果两个人同时从一段路的两端出发,相对而行,会怎样?这时揭题:今天我们就利用方程来研究相遇问题。然后出示例题:小林和小云家相距4.5千米,小林的骑车速度是每分钟250m,小云的骑车速度是每分钟200m。两人何时相遇?这时我请两名学生商量后上台表演相遇,通过他们分别扮演小林和小云,学生深刻理解“同时出发”、“相向而行”、“相遇”这几个相遇问题的要素,学生在进行合作演示相遇过程的时候,他们不断商量如何表演,引发的思考正是解决问题的关键,这比教师强加给他们要生动有趣很多,这个环节帮助他们理解相遇问题中的重点,合作表演比较成功。
3.分析数量,构建模型。
然后我加以引导在黑板上画出线段图分析数量关系,使题意更加形象直观,数量关系更清楚。之后我鼓励学生寻找题目的等量关系,学生发现了在相遇问题中两个重要的等量关系,我将他们的发现板书在黑板上:小林骑的路程+小云骑的路程=总路程;(小林骑的速度+小云骑的速度)×相遇时间=路程,然后我并没有将两种方法孤立开来,而是引导学生对这两种方法进行比较,通过比较沟通了联系,实际上是运用了乘法分配律,在学习中感受理解相遇应用题的规律和特征。
二、改进之处
1.画线段图是个难点,不少学生不会画线段图时,我有些急于求成,边讲边直接给学生出示了线段图,这时应多些引导,多些耐心,引导他们一点一点地将线段图画出来最好。
2.解方程的能力有待进一步增强。学生基本上通过数量关系列出方程,但是计算是出现问题不少,应该在计算上再加以细心指导,不断练习,提高正确率。
生活是具体的,数学是抽象的。在教学中要把抽象的数学内容寓于现实的情境中,引导学生构建解决问题的模型。
本文来源:https://www.010zaixian.com/yuwen/jiaoxuefansi/891476.htm