本节课内容是在学生已经学会长方形、正方形的面积计算已掌握平行四边形的特征,会画出平行四边形的底和对应的高的基础上教学。我能根据学生已有的知识水平和认知规律进行教学。
一、渗透“转化”思想,引导探究
通过本节课的学习,要能够为推导三角形、梯形面积的计算公式提供方法迁移。“转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,先通过数方格求面积发现数方格对于大面积的平行四边形来说太麻烦,然后根据观察表格中的数据,引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。接着,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形长方形的转化过程,以及他们之间的关系,突出了重点,化解了难点
二、重视操作试验,发展能力
本节课教学我充分让学生参与学习,让学习数方格,让学生剪拼,引导学生参与学习全过程,去主动探求知识,强化学生参与意识,我引导学生运用实验割补法把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。
运用转化的方法推导面积计算公式,可以有多种途径和方法,我没有把学生的思维限制在一种固定或简单的方法上,我尊重学生的想法,结果学生采用几种剪拼方法将平行四边形转化成长方形来推导面积。
三、注重优化练习,拓展思维
练习设计的优化是优化教学过程的一个重要方面。本课教学过程中,注重学练结合,既有坡度又注重变式。
第一题告诉学生底和高,直接求平行四边形面积,规范格式,检验学生是否达到运用公式,解决实际问题。第二题出示含有多余条件的图形题,强调底和高必须对应,学习上更上一个层次。第三题考察学生灵活运用公式求平行四边形的底和高。第四题认识等底等高的平行四边形的面积相等。现不要学生计算,引导学生撕开它们的面积相等吗?并说明理由,让学生明确两个平行四边形共底,根据平行线间的距离处处相等,它们的高也相等。本课练习能促使学生牢固的掌握新知。
本文来源:https://www.010zaixian.com/yuwen/jiaoxuefansi/828832.htm