《轴对称图形》是苏教版第六册第7单元的内容。和平移、旋转一样,轴对称也是对图形进行变换的方法之一。
本节课内容属于《空间与图形》这个大范畴,学生已有的知识基础是一年级认识方位与简单的平面图形;为以后学习简单图形旋转90°打下基础。本节课教材提供了民间剪纸,飞机、奖杯、天安门城楼等图片,加上教师课外收集到的许多学生感兴趣的图片,为本课创设了一个具有强烈美感的氛围,让学生在欣赏美的同时引出疑问:它们有什么共同特点?
物体的对称现象,抽象为平面图形后,是对称图形,本节课我们研究的是平面图形的轴对称现象。所以如何从物体的对称现象过渡到“平面图形”的对称,这是我急需解决的问题。教材似乎表达也不是很清楚。天安门城楼抽象成类似天安门的图像后,学生已能理解什么样的图形是轴对称图形,但后面大量的练习都是以实物图来判断的。比如字母A、B、H和国家的国旗、各种标志等。学生就要从颜色,形状等来判断。但是由于印刷的问题,学生会产生疑惑。是不是什么时候A都是轴对称图形呢。如果不是抽象出来,天安门城楼是不是轴对称图形呢?
轴对称图形就是对折之后能够完全重合的图形。何谓“完全”?什么是对称轴?对称轴具有什么特征?在教学设计和过程实施中,学生被迫“浅尝则止”,根本没充分体会什么是“重合”和“完全重合”。学生在动手操作的过程中,不能用自己的语言总结出轴对称图形的特征,从而对于如何判断平面图形是否轴对称存在很大的疑惑。“完全重合”就像是建立在沙滩上的海市蜃楼,无论是导入还是新授环节,总觉得太粗糙,缺少了一些数学味。
学生正处于低段与高段的衔接处,其数学思维也正不断发展,但体验永远是最好的教育形式之一,只有我们俯下身来走进儿童的心灵,走进儿童的精神世界,撷取学生身边生活中的事例,采用学生喜欢的方式创设情境,才会使学生获得真正的感悟、深刻的体验,才能最终将这感悟、体验沉淀到他的内心深处,成为一种素质,一种能力,伴其终生,受用一生。所以以后的教学应加大学生在折和减方面的训练,以进一步理解轴对称图形的概念。
本文来源:https://www.010zaixian.com/yuwen/jiaoxuefansi/778591.htm