长方体表面积教学是在学生认识并掌握了长方体、正方体特征的基础上教学的,也是学生学习几何知识由平面计算扩展到立体计算的开始,是本单元的重要内容。学生对旧知识已经有了一定的积累,但空间思维还没有真正形成。为了让学生更好的掌握这部分知识我设计了这样的教学过程。首先出示一个礼品盒,如果在礼品盒的外部包上一层精美的包装纸,包装纸的面积有多大呢?你知道怎样求吗?这时,学生纷纷说出了自己的想法,也就是求长方体的六个面的表面积。
这时,我让学生以小组为单位,拿出自己手中的礼品盒,测量礼品盒的长宽高,并求出上下、左右、前后的面积,然后求表面积也就是包装纸的面积。学生在动手操作完成这一系列的过程并不困难,在大家的共同讨论、归纳下,学生们很快就得出了结论,知道了什么叫长方体的表面积并且还总结出了公式:长方体的表面积=(长×宽+宽×高+长×高)×2或长×宽×2+宽×高×2+长×高×2利用公式学生能正确进行计算。通过练习,学生们对于谁乘谁能求出哪个面已经相当熟练了,可以说是脱口而出。但在解决实际问题的时候漏洞百出,例如:在长方体的灌桶盒的四周包上一层商标,商标纸的面积是多少?在长方体的水泥柱子上刷油漆,刷油漆的面积是多少?在长方体的游泳池的底部和四周抹水泥,抹水泥的面积是多少?等这方面的问题,学生不知是否有考虑,不管说什么,学生们总是求六个面的表面积,和实际相脱节。这使我陷入了深深的思索,这是为什么呢?
随着小正方体个数的增加,露在外面的面数变化有什么规律?
本文来源:https://www.010zaixian.com/yuwen/jiaoxuefansi/555514.htm