三年级上数学教学反思
三年级上数学教学反思
反比例函数教学反思
反思1: 首先是复习正比例函数的有关知识,目的是让学生回顾函数知识,为接下去学习反比例函数作好铺垫,其次给出了三个实际情景要求列出函数关系式,通过归纳总结这些函数都是反比例函数,以及反比例函数的几种形式,自变量的取值范围。又通过列表格的方法对反比例函数和正比例函数进行类比,巩固反比例函数知识。通过做一做的三个练习进一步巩固新知,但到这里用时接近25分钟,时间分配上没有很好把握为接下去没有完成教学任务埋下伏笔。
接下去是要进行例1的教学,先进行的是杠杆定理的背景知识的介绍,在学生练习纸上让学生自己来独立完成三个问题,然后有学生回答,当进行到第二时,时间已经不够了,很仓促进行了小节。
这节课在设计过程中多多少少忽略了学生的想法,在备课过程中,没有备好学生,站在学生的角度去设计课堂,这方面做的很不够,有些问题的处理方式不是恰到好处,思考问题的时间不是很充分;还有的学生课堂表现不活跃,这也说明老师没有调动起所有学生的学习积极性;另外课堂中指教者的示范作用体现的不是很好,,肢体语言也不够丰富,鼓励的话显得很单一,而且投影片上在新课导入的时候还出现了差错,总之,我会在以后的教学中注意以上存在的问题。
综观整堂课,严谨亲切有余,但活泼激情不足,显得平铺直叙的感觉,缺少高潮和亮点;在今后的教学中要严格要求自己,方方面面进行改善!
经过这节课的教学,让自己收获不少,反思更多。教学之路是每天每节课点点滴滴的积累,这条路的成功秘诀只有一个:踏实!对于我,任重而道远,我将默默前行,提高自己,让我教的每一个孩子更加优秀 。
反思2: 上完此节课后,我回忆着这节课的段段细节,不断思索着这节课的成功之处与不足之处,希望能使自己在这节课中获得更大的收获。
反思3:《反比例函数》第一节课讲完后的反思,本节课学生表现积极踊跃有活力,效率比较高。但是做为新老师也有不足之处,主要是概念讲解过于简单忽略了形成过程,例题设置过于机械化梯度和深度不够。在今后的教学上要注意不能靠以往的经验来讲课,一定要精心设置,进一步探索和挖掘教材和考点,使得每一节课有价值而非浮于表面。
《反比例函数图像性质》一课的教学反思
反比例函数图像的性质是反比例函数的教学重点,把握好本节课的内容对于学生解决许多问题有很好的帮助,在学生已有的正比例函数性质的基础上,学生学习性质比较轻松,但运用该性质解决问题存在难度。学生需要在理解的基础上熟练运用。为此应加强反比例函数与正比例函数的对比:应该有意识地加强反比例函数与正比例函数之间的对比,对比可以从以下几个方面进行:
(1)两种函数的关系式有何不同?两种函数的图像所在位置是否相同?两种函数的增减性是否有区别?
(2)两种函数的取值范围有什么不同,常数的符号的改变对两种函数图像的变化趋势有什么影响?
(3)利用待定系数法求函数的解析式对于两个函数知道几点就可以求的。
从这些方面去比较理解反比例函数与一次函数,帮助学生将所学知识串 联起来,提高学生
综合能力。运用多媒比较两函数图像,使学生更直观、更清楚地看清两函数的区别。从而使学生加深对两函数性质的理解。
通过本案例的教学,使我深刻地体会到了信息技术在数学课堂教学中的灵活性、直观性。特别是反比例函数中k值对函数图像的位置教学和无交点坐标的教学起到一定的作用。虽然制作起来比较麻烦,但能使课堂教学达到预想不到的效果,使课堂教学效率也明显提高。提高学生对数学学习的兴趣和深入研究的习惯。当然在教学中,由于小部分同学的数学基础薄弱,导致学习比较吃力,通过这种直观演示能较好的掌握知识,课后还应加强对性质运用的训练。
二次函数图象之教学反思
这堂课最大 的却失是教学手段单一,浪费了时间,降低了课堂效率,这一点在探讨a的取值决定抛物线的开口方向和大小时我深有感触,为了让学生自己去体会,画图像花费了相当的时间,只是后面学生的反馈应用时间不够,后来上网查看,要是能借助几何画板来掩饰,那将是别有一番效果,所以我认为要做好反思要注意一下几点:
1、要有勇于改革创新的精神,积极投身于数学教学改革的大潮中。改革本身就是一种新事物,每时每刻都有新现 象、新动向、新问题。2、要想有所发现,还必须拓宽知识面,增加知识底蕴。
3、要勤于动脑,善于思考。在上完每节课后都要进行反思,反思一节课的成败得失,并及时做好记录。
4、要善于总结,把感性认识上升到理性认识。要经常看自己所写的教后记录,进一步对其进行深层次的探讨,运用去粗取精、去伪存真、由此及彼、由表及里的科学方法,抛开肤浅的、表面性的东西,注重对规律的揭示,对真理的发现。
二次函数复习课教学反思
立足于二次函数在初中数学函数教学中的地位,根据学生对二次函数的学习及掌握的情况,从梳理知识点出发采用以习题带知识点的形式,我精心准备了《二次函数》的第一节复习课,教学重点为二次函数的图象性质及应用。
本节通过建立函数体系回忆了二次函数的定义,其图象与性质及与一次、反比例函数图象的综合应用,相继进行,但此环节中“2a与b的关系”学生没有提到,迫于突破此难点,我让学生观察课例图象,并进一步引导观察对称轴的具体位置后,仅有十几个学生准确理解、掌握,于是我进一步的分析“2a与b的关系”由对称轴的具体位置决定,并说明由a>0与b>0能推导出2a+b>0的方法仅适于此题,但效果不尽人意,仍有一部分学生应用此法解决相关问题。如此导致处理二、2、(2)题时间紧张,使得重点不凸现。将第(3)题留为课后作业,来了个将错就错,为下一节课复习“二次函数与二元一次方程”的关系巧作铺垫。 通过本节课的备课与教学,我受益匪浅,感受颇多:
本文来源:https://www.010zaixian.com/yuwen/jiaoxuefansi/3636843.htm