欢迎来到010在线作文网!

五年级数学下册《数学广角找次品》教学反思

教学反思 时间:2021-08-31 手机版

五年级数学下册《数学广角找次品》教学反思(通用4篇)

  身为一位到岗不久的教师,我们要在教学中快速成长,借助教学反思我们可以快速提升自己的教学能力,那么教学反思应该怎么写才合适呢?以下是小编整理的五年级数学下册《数学广角找次品》教学反思(通用4篇),仅供参考,希望能够帮助到大家。

  五年级数学下册《数学广角找次品》教学反思1

  作为一线的数学教师,我一直在不遗余力地追求心目中的理想课堂:直面学生的数学现实、尊重教师的个性创造、目标落实有效、学生持续发展。而有效的课堂教学需要教师通过不断的反思发现不足,从而改进教学设计。最近教研室开展了“一课同上,同课异构”活动,作为青年教师的我经历了两周的精心准备,并进行了多次的的课堂实践之后,感慨颇多,收获颇多,并对有效的课堂教学有了更深的认识。

一、美好的预设≠理想的课堂

  找次品这节课属于思维训练课,主要培养学生的优化意识和逻辑推理能力,同时掌握找次品的最优方法。

  我是这样设计教学过程的:先从3个零件中找一个偏重的次品,再从5瓶口香糖中找一个轻一点的次品,让学生初步掌握找次品的基本方法,接着再来分析9筐松果中找次品的方法和次数,这时进行优化,并用12个零件进行验证,最后设计的巩固练习是:有15箱饼干,其中有一箱是次品,轻一点。至少称几次一定能把它找出来?该怎么分?在教学中我让学生利用手中的学具做一做(称的过程),然后同桌说一说(怎样称的)。看着学生们动手又动脑,积极、主动地参与研究,我也禁不住加入其中。精心预设后的课堂显得更加活跃,更加生机勃勃。在这时问题出现了,学生在验证时发现12个零件不用平均分成3份,平均分成4份,3个3个的也可以只用3次就找到次品。我随即问道:“有没有比平均分成3份更少的分法?”学生:“没有。”“一般情况下我们就平均分成3份去称,次数一定是最少的。”我仓促的进行了小结。40分钟的课堂就这样结束了,带着遗憾,带着疑问下了课。

二、精雕细琢,和学生一起收获着

  课后我又反复解读教材,回忆着课堂上的一个个镜头,听了其他老师的点评和建议,我重新备课,又进行了第二次上课。

  这次我是这样预设的,把3个零件和5瓶口香糖作为学生研究的起点,3给以最优策略的暗示,5给予学生研究方法的指导,师生结合共同研究,训练学生的逻辑思维能力和表述能力,而9个零件是研究的主体,学生独立自主研究,找出最优方案,并体会最优方案的'道理。将待测物品平均分成3份这种方法,在第一次称时,能确定合格品的个数最多。无论天平是否平衡,都能一次排除三分之二的合格品。将第二次称的范围缩小到待测物品的三分之一。经过老师的引导,学生发现了其中的奥妙。这次我把原来的巩固练习换成了有趣的小游戏——猜一猜,猜猜如果有27个、81个、243个待测物品,要想找出唯一的次品,用天平称至少称几次一定能找到次品?让学生运用本节课的知识实现思维的跨越,并从中发现规律,如果待测物品个数×3,那么找次品称的次数会加1。课堂上学生们积极举手发言,交流想法。通过观察、猜测、实验操作、画图、推理与合作交流等学习方法,使学生的思维逐步提高,进行优化思维的渗透。

  本节课所研究的待测物品个数都比较特殊,都是3的倍数,刚好可以平均分成3份,我准备第二课时再研究其他普通的一些数如8个、10个等。

  “学然后知不足,教然后知困”。面对新的教学内容,我们习惯性的反应就是“难”,可经过这次磨练,我才发现不是教材难,而是自己太“懒”,不愿意去学习,不愿意去思索,其实方法总比困难多。有效的课堂需要精心的预设,有效的课堂需要不断反思。

  五年级数学下册《数学广角找次品》教学反思2

  新课程数学五下教材在数学广角中安排了“找次品”这一内容的教学,其目的是通过“找次品”这一探索性操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,再通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养学生观察、分析、推理以及解决问题的能力,同时也让学生感受到数学与日常生活的密切联系。基于以上认识在进行“找次品”这一内容的教学时,对教材进行了处理,以求更好的促进学生的思维发展。

  精选研究数量,逐步优化找次品的方法

  教学过程中我放弃的了教材中以3个物品、5个物品再到9个物品的研究顺序,将其改为3个物品、4个物品、8个物品、9个物品进而扩展到10个、27个物品中找次品的研究。操作过程简述如下:

  1.探究3个物品中如何寻找轻的一个,利用学会已有的知识经验,充分发挥学生的想像和思维能力,在体验了找次品方法的多样性后,以用天平称作为实践操作,第一次优化找次品的方法,使学生得出找次品用天平称最方便。并在教师的指点下完成数字化的分析方法:

  平衡1次3(1、1、1)

  不平衡1次

  2.利用不同的分法探究出4个物品中找一个次品的方法,在学生实践操作和数字化的分析过程后,质疑利用天平称找次品时,一般要将物品分成几分?两份还是三份?引出用较大数量来进行研究的必要性,并随机引导学生用数字化的方法去研究8个物品中的次品应如何找。当学生得出方法后,将学生的所有方法罗列在学生面前,利用观察让学生发现数据大时分两份的方法次数不是最少,第二次优化找次品的方法,是学生初步得出用天平称找次品时一般要分成三份,两份在天平上、一份在天平外。但同时有给学生制造一个悬念:同样分三份,有些称的次数少,有些却反而更多?激起学生进一步探究的欲望。

  3.以9个物品为例继续研究,第三次优化找次品的方法。在关注学生用数字化的形式来分析问题的同时,反馈出学生的解题方法,几关注解题策略的多样化,又为方法的优化提供可做分析的蓝本。(其中部分方法不做全面展示)

  9(4、4、1)4(1、1、2)2(1、1)3次

  9(3、3、3)3(1、1、1)2次

  9(2、2、5)5(2、2、1)2(1、13次

  9(1、1、7)7(1、1、5)5(1、1、3)2(1、1、1)4次

  而后教师重点指导交流:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?从而得出平均分能够保证找出次品且称的次数最少这一结论。随机使学生产生不能平均份的数量应该怎样处理的问题,引导学生观察刚才8个物品找次品的方法,思考其中分三份的几个情况?从中发现“利用天平找次品,如果待测物品的数量不能平均分成3份时,我们要尽可能的使每一份的数量差不多,其中必须有两份要一样多,另一份的数量尽可能与之接近。”最终优化找次品问题的解题策略。

猜想验证,探究规律

  回顾前面找次品的研究,让学生发现在3个物品中找只要1次,4个物品中找只要2次,8个、9个物品中找也只要2次。并猜想5个、6个、7个物品中找的话,要用几次才可以了?并进行分析验证,得出在4个到9个物品中找一个次品只要用天平称2次的结论。随后让学生研究10个和27个物品中找一个次品的次数,既做为前面所学知识的巩固练习,又让学生进一步探究找次品的规律,得出相应的结论。


本文来源https://www.010zaixian.com/yuwen/jiaoxuefansi/3571230.htm
以上内容来自互联网,请自行判断内容的正确性。若本站收录的信息无意侵犯了贵司版权,请给我们来信(zaixianzuowenhezi@gmail.com),我们会及时处理和回复,谢谢.