一个数除以小数的教学反思
课上完后,有了初步的反思,其中有个问题是——课堂时间不够用。在小组研讨中,综合大家的想法,知道一节课的教学目标不能太多,这样的话会出现“贪多嚼不烂”的结果。备课时要抓住一节课的重难点,课堂上要重点突出,突破难点。至于思想方法可以点到为止,逐步渗透。
在小组教研活动中,与苗老师和王老师同课异构,听评课中大家重点讨论了三个问题:
一、学生学习本节课的基础是什么?
经过听课与讨论发现,探究一个数除以小数的计算方法并能正确计算,学生需要具备三方面的基础知识。一是理解并灵活运用商不变的性质;二是能正确地把小数或整数的小数点向右移动按要求移动;三是能熟练地计算除数是整数的小数除法。
因学生刚刚接触除数是整数的小数除法学生需要具备的技能——除数的小数点向右移动几位,被除数的小数也向右移动几位,是结合了上面的第一与第二个知识点,也是本课的难点。分析难点难在这里思维层次比较多。
第一层次:把除数变为整数,去掉除数的小数点即可;——这一层次思维含量比较低。
第二层次:除数变成了整数,小数点隐掉或省略了。需要思考:划掉除数的小数点相当于把它的小数点向右移动几位。
第三层次:被除数的小数向右移动相同的位数时,有时小数位数够,如果不够还需要考虑添几个0,怎样添的问题。
因学生刚刚接触除数是整数的小数除法,计算不太熟练,更达不到半自动化(借用《给教师的建议》中的提法),再加上一个数除以小数的思维层次比较多,这部分的内容对于学生来说是比较难的。所以课前如果设计专门的准备课,再进行新知的探究也许能提高的教学效率,正所谓“磨刀不误砍柴功”嘛。
二、怎样处理学生自主探究出的正确方法与错误方法?
因为这节内容比较难,自己总怕学生自己学不好,所以我和王霞老师都采用了“半扶半放”的教学方式进行教学,而苗洁老师是完全放手让学生自主探究,然后收集各种问题进行分析。于是思考:自己不放手的原因是什么?是不相信学生的能力?还是怕一节课的时间不够用?(可能太拘于常规时间的限制)
常老师提出来,在教学中怎样处理千差万别的错误与唯一正确的计算方法之间的.关系呢?当时我想,是让正确的先入为主,还是先把错误的拿出来剖析?是怕错误的先入为主,还是根本没有辨析错误的意识?
大家都认为苗老师的方法好,但在处理学生不同的计算方法的顺序上有分歧。一方的意见是先展示正确的方法,再分析错误的方法;另一方的意见是先处理有明显小错误的方法,再逐步地处理有大问题的方法,最后确定正确方法。经过讨论,大家多数同意第一种意见,先引导学生分析正确方法的算理,再用其中的道理分析错误方法的问题所在,这样不仅可以促使学生从另一个侧面理解算理,还可以帮助出错的学生弄清自己错在何处。这样学生“知其然也知其所以然”,才能更加灵活地解决综合在一起的各种计算题。
三、特例与一般例子哪个先出示比较好?
一个数除以小数教材上的第一个例子是“7。65÷0.85”,经过分析这是一个特例,特殊在被除数与除数的小数位数相同,紧跟着的“做一做”中前两个例子的被除数与除数的小数位数也相同,最后一个是三位小数除以两位小数的计算。这样安排会给学生造成“一个数除以小数,把被除数与除数都变成整数(或去掉小数点)”的表面印象。所以我将例子改为“1.296÷0.72”,这样的例子更为一般,也不会让学生形成上面不太严谨的印象。我的想法是“从一般到特殊”地引导学生进行探究。而苗老师与吕老师认为“7.65÷0.85”比较简单,应该按“从简单到复杂”的顺序引导学生展开探究。最终没有形成统一看法,认为在以后的教学中进行对比实验,看究竟哪一种方式的教学效率更好。
【一个数除以小数的教学反思】相关文章:
本文来源:https://www.010zaixian.com/yuwen/jiaoxuefansi/2601261.htm