欢迎来到010在线作文网!

高等数学教学反思论文

教学反思 时间:2021-08-31 手机版

  摘要:高等数学作为一门基础性学科,在高校教学中具有举足轻重的地位。从基本概念讲解和知识的综合应用两个方面介绍了在本科生高等数学教学中的体会与思考。

高等数学教学反思论文

  关键词:高等数学;基本概念;综合应用能力

  高等数学是高校教学中的一门重要课程,也是大多数刚踏入大学校园的本科生必修的一门课程。随着高校规模的进一步扩大,学生的素质和水平参差不齐,而高等数学又是一门理论性强、具有严密逻辑思维性的基础学科,因此要求每位高等数学教师要切实重视这门课的教学。要想学生真正喜欢上这门课,并且很好地掌握这门课,就需要不断提高教师的教学质量。

  高等数学基础性强、理论性强、逻辑性强,它的推理、证明、数据演算等必须经得起推敲,容不得半点虚假。为了避免出现“一听就会,一做就错”、生搬硬套、遇到实际问题不会分析的状况,在高等数学的课堂教学中要从基本概念、基础知识出发,逐步培养学生的分析、推理能力和综合应用能力。

  本文就谈一下笔者在高等数学教学中的体会与思考。

  一、注重基本概念的讲解

  数学概念是人类对现实世界的空间形式和数学关系的简明概括,它是推导定理、公式、法则的出发点,是建立理论体系的着眼点,是数学教学的核心内容。但是许多学生在学习高等数学的过程中不注重课堂教师概念的讲解,只偏重于解题。一看到题目,如果题目曾经见过,不管条件如何就开始生搬硬套;如果题目没有见过就发呆愣神,根本不会分析推理。因此,在课堂教学中,一定要注重概念的理解,而不是将一个个抽象的概念“冰冷冷”地放在那儿,教师应该将知识体系很好地连贯起来,同时将所学内容与实际生活结合起来,能够生动形象地组织教学。

  基本概念的引入和数学史结合

  在讲解基本概念的时候,穿插一些数学史的内容,一方面可以加深学生对数学的兴趣,另一方面也可以加深对概念的理解。例如,在讲解“导数”概念的时候,首先引入一些数学史的内容。

  到了17世纪,有许多问题需要解决,这些问题也就是促使微积分产生的因素。归结起来,大约有四种主要类型的`问题:第一类是求即时速度问题;第二类是求曲线的切线问题;第三类是求函数的最大值与最小值问题;第四类是求曲线长、曲线围成的面积、曲面围成的体积、物体重心的问题。这些问题在当时得到广泛的关注,许多著名的数学家、物理学家、天文学家都提出了许多很有建树的理论,为微积分的创立作出了贡献。

  17世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作,他们最大的功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。

  牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼兹却侧重于几何学来考虑。

  这一段数学史的讲解,首先为紧接着引入“导数”概念时给出两个引例(直线运动的速度和曲线的切线)做好了铺垫,也引入导数概念的出发点——直观的无穷小量,与上一章的极限概念结合起来。其次,17世纪要解决的前三个问题,也就是导数这一部分重点要解决的问题,开篇就把该章的主要框架给出。第四个问题为后面积分学的引入埋下了伏笔。介绍牛顿和莱布尼兹的主要贡献,为定积分求解公式称为牛顿-莱布尼茨公式给出了合理的解释。

  一段数学史的引入既让学生了解了微积分的发展,调动了学生学习兴趣,也可以更好地衔接课堂内容,何乐而不为呢?2.基本概念和实际相结合在讲解级数这一部分内容时,学生总觉得枯燥、抽象,感觉就是一些运算,并没有什么实际的应用。

  讲解时,首先给出一个有名的悖论“Achilles(传说中的希腊英雄)追赶乌龟”:设乌龟在Achilles前面A米处向前爬行,Achilles在后面追赶,当Achilles花了a秒时间跑完A米时,乌龟已向前爬了B米;

  当Achilles再花b秒时间跑完B米时,乌龟又向前爬了C米,……这样的过程可以一直继续下去,因此Achilles永远也追不上乌龟。

  显然这一结论有悖于常理,是绝对荒谬的,可是如何用数学语言解释清楚呢?这样一个悖论可以调动学生积极思考。在思考的过程中,引入级数的概念。接着讲解级数的一些基本性质,从而再给出一些级数在实际中的应用,例如:一慢性病人需每天服用某种药物,按医嘱每天服用0.05mg,设体内的药物每天有20%通过各种渠道排泄,问长期服药后体内药量维持在怎么样的水平?通过对于级数的计算可以得到长期服药后体内药量近似为:0.05 10.25m g5454542 3#8 ++`j +`j+gB=而在实际病例中,医生往往根据病人的病情,考虑体内药量水平的需求,确定病人每天的服药量。如一慢性病人需长期服药,按照病情,体内药量需维持在0.2mg,设体内药物每天有15%通过各种渠道排泄掉,问该病人每天的服药剂量应该为多少?[2]这样声情并茂、理论联系实际的一节课就可以让学生既思考了问题,又可以掌握基本知识,同时还激发了学生对抽象数学的兴趣,收到事半功倍的效果。

  二、注重知识的综合应用

  高等数学现行教材中的很多例题,由于篇幅原因一般只有题目的解答过程却没有思考过程,因此爱问问题的学生往往会问,如果是自己解题的话,怎么会这样想呢?这个疑问就是授课教师在讲解题目时重点要解决的。也就是说,授课教师不但要把解题的过程讲解清楚,还要从解题思路方面进行引导,指导学生怎样运用所学知识独立寻找解题思路,也就是逻辑思维能力的培养。

  例如在讲中值定理这一节时,有例题:设在区间I上恒有:f( x )f( x )2x x ,x ,x I1 2 1 221 2-G-!证明此函数在I上为常数函数。

  学生本来对证明题就有一种畏难情绪,一见到是抽象函数的证明题,更是无从下手,一头雾水了。这时教师不能直接讲解题过程,而是要逐步分析、理解,让学生给出解题过程。

  首先帮助他们分析题意,引导学生逐步思考。要想证明一个函数为常数函数,由拉格朗日中值定理可知,“如果函数在区间I上的导数恒为零,那么函数在区间I上是一个常数”,因此只要证明“在区间I上,函数的导数均为零”。

  讲到此处,给学生一个思考的余地,让他们试着去选择方法,看看如何证明函数的导数为零。于是学生在思路的引导下会进一步考虑。很多学生会选择拉格朗日中值定理,将左边函数值的差转化为和导数相关的量。此时教师就可以趁势鼓励他们想着要去转化左边的式子,非常正确。但是转化的过程要利用拉格朗日中值定理,那么条件满足吗?在拉格朗日中值定理中要求所考虑的函数在闭区间内连续,对应的开区间上可导,定理中的两个条件缺一不可,而这个题目中并没有给出函数的连续性和可导性。那要怎么处理呢?如果想出现导数形式,就可以从导数的基本定义出发进行分析。导数是差商的极限,反映的是变化率。

  左端只给出了函数值的差,那么自然想着要和自变量的差结合,出现差商形式,将所给等式变形为:()()x xf x f x2x x1 21 21 2G---而导数是一种极限形式,进而不等式两边取极限,利用夹逼准则结合极限的性质,所证结论成立。

  通过逐步分析,问题就迎刃而解了。这个分析题的过程既有学生的参与,也有教师的讲解,利用条件和基本概念逐步分析就是对学生推理思维训练的过程。对学生来说收获更大。由这个题目的分析求解过程可以发现这是一道综合性较强的题目,需要学生对每个知识点——拉格朗日中值定理、导数定义、夹逼准则以及极限的性质必须要熟练掌握,然后才会融会贯通。

  数学的题目千变万化,永远做不完。这就要求学生对基本概念掌握扎实,每个知识点要理解清楚。在题目的分析过程中,对基本概念和知识点融会贯通,逐步培养自己的逻辑分析、综合思维的能力。那么无论碰到什么样的题目类型都可以独立思考,逐步分析,寻找合适的解题方法。

  总而言之,高等数学的教学是需要一个过程的,在这个过程中,教师只有不断提高自己的数学素养和教学能力,才能把高等数学这门课讲好,才能逐步激发学生学习的兴趣和乐趣,达到教与学的双赢。

  参考文献:

  [1]卡茨.数学史通论[M].李文琳,等,译.北京:高等教育出版社,2006.

  [2]陈纪修,於崇华,金路.数学分析(下册)[M].北京:高等教育出版社,2004.

  [3]同济大学数学教研室.高等数学(上册)[M].北京:高等教育出版社,2007.

【高等数学教学反思论文】相关文章:

1.SPOC在高职高等数学教学的应用论文

2.高等数学教学应对措施论文

3.浅谈高等数学教学计策论文

4.高校高等数学教学应用能力的培养论文

5.高校文科高等数学教学研究的论文

6.高等数学教学计策浅析论文

7.高等数学教学效果认识与探索论文

8.高等数学教学方法分析论文


本文来源https://www.010zaixian.com/yuwen/jiaoxuefansi/1928349.htm
以上内容来自互联网,请自行判断内容的正确性。若本站收录的信息无意侵犯了贵司版权,请给我们来信(zaixianzuowenhezi@gmail.com),我们会及时处理和回复,谢谢.