三角函数的最值或相关量的取值范围的确定始终是三角函数中的热点问题之一。以下是小编整理的高中求最值的方法总结,欢迎大家前来查阅。
方法一:利用单调性求最值
学习导数以后,为讨论函数的性质开发了前所未有的前景,这不只局限于基本初等函数,凡是由几个或多个基本初等函数加减乘除而得到的新函数都可以用导数作为工具讨论函数单调性,这需要熟练掌握求导公式及求导法则,以及函数单调性与导函数符号之间的关系,还有利用导数如何求得函数的极值与最值。
例1 已知函数,当x∈[-2,2]时,函数f(x)的图象总在直线y=a-e2的上方,求实数a的取值范围。
分析:此题属于恒成立问题,恒成立问题大都转化为最值问题。
解:原问题等价于f(x)>a-e2恒成立,即x2+ex-xex>a-e2在[-2,2]上恒成立,即x2+ex-xex+e2>a在[-2,2]上恒成立。
令g(x)=x2+ex-xex+e2>a-e2,x∈[-2,2],原问题等价于a 下面利用导数讨论g(x)的最小值,求导可得g'(x)=x(1-ex)。
当x∈[-2,0]时,g'(x)≤0,从而g(x)在[-2,0]上单调递减;
当x∈(0,2]时,g'(x)<0可知g(x)在(0,2]上也单调递减。
所以g(x)在[-2,2]上单调递减,从而g(x)min=g(2)=2即a∈(-∞,2)
评注:本题是求参数的取值范围问题,利用等价转化的思想可化为不等式恒成立问题,进而化为最值问题,再借助于导数讨论函数的单调性求出的最值。其实高中阶段接触到的最值问题大都可以运用单调性法求得最值。
方法二:利用不等式求最值
掌握和灵活运用,│a│+│b│≥│a±b│≥││a│-│b││这一类型的基本不等式,在求一些函数最值问题时通常十分便捷,在解题时务必注意考虑利用不等式求最值的条件限制 。
本文来源:https://www.010zaixian.com/shiyongwen/zongjie/442499.htm