欢迎来到010在线作文网!

数学期中总结

总结 时间:2021-08-31 手机版

数学期中总结

  总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它能够给人努力工作的动力,因此我们要做好归纳,写好总结。但是却发现不知道该写些什么,以下是小编为大家整理的数学期中总结,仅供参考,希望能够帮助到大家。

数学期中总结1

  一、定义

  1、如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。这条直线就是它的对称轴。我们也说这个图形关于这条直线[成轴]对称。

  2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。这条直线叫做对称轴,折叠后重合的点是对应点,叫做对应点。

  3、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

  4、有两边相等的三角形叫做等腰三角形。

  5、三条边都相等的三角形叫做等边三角形。

二、重点

  1、把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。

  2、把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称。

  3、垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。

  4、垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

  5、如何做对称轴:如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线。因此,我们只要找到一对再对应点,作出连接它们的线段的垂直平分线就可以得到这个图形的对称轴。同样,对于轴对称图形,只要找到任意一组对应点所连线段的垂直平分线,就得到此图形的对称轴。

  6、轴对称图形的性质:对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化。由个平面图形可以得到它关于一条直线成轴对称的图形,这个图形与原图形的形状,大小完全相等。新图形上的每一点,都是原图形上的某一点关于直线的对称点。连接任意一对对应点的线段被对称轴垂直平分。

  7、等腰三角形的性质:等腰三角形的两个底角相等[等边对等角]等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合[三线合一][等腰三角形是轴对称图形,底边上的中线(,底边上的高,顶角平分线)所在直线就是它的对称轴。

  等腰三角形两腰上的高或中线相等。

  等腰三角形两底角平分线相等。

  等腰三角形底边上高的点到两腰的距离之和等于底角到一腰的距离。

  等腰三角形顶角平分线,底边上的高,底边上的中线到两腰的距离相等。]

  8、等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等[等角对等边]。

  [如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。]

  9、等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°。

  10、等边三角形的判定:等边三角形的三个内角都相等,并且每一个角都等于60°。三个角都相等的三角形是等边三角形。有一个角是60°的等腰三角形是等边三角形。

  11、直角三角形的性质之一:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

  12、在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大。

三、注意

  1、(x,y)关于原点对称(-x。-y)。关于x轴对称(x,-y)。关于y轴对称(-x,y)

  2、用坐标表示轴对称。

  只要这样踏踏实实完成每天的计划和小目标,就可以自如地应对新学习,达到长远目标。由为您提供的人教版八年级上册数学期中复习要点总结:轴对称,祝您学习愉快!

数学期中总结2

  本学期我担任八年级数学教学工作,半学期来,我自始至终以认真、严谨的治学态度,勤恳、坚持不懈的精神从事教学工作。按照新还注意以德为本,结合现实生活中的现象,多方面、多角度去培养学生的数学能力。

级数学上册一至三章共三章内容,全年级共56人参加考试,有23人及格,100人以上的有1人,90分以上有3人,80分以上有11人,40分以下有13人,平均分为56,及格率为41

班级是八年级二班,学生成绩参差不齐,两级分化现象严重。学生学习氛围不太浓厚,部分学生学习态度不端正。成绩较好的学生对题目的应变能力较弱,程度一般的学生对基础知识的掌握还有欠缺,对部分概念的理解不到位。学生普遍存在的问题就是解决实际问题能力较弱。

24小题,选择题8题共24分,填空题7题共21分,解答题7题共75分。难度较大,特别是解答题,7大题中6大题是证明题。对我们学生来说,说理过程不完整是普遍存在的问题。

  四、得失分情况。

  在第一大题的8道选择题中,没有全错的,只有一人全对,30人半对半错。其中第2和6题正确率达80%,而第7题的错误率达98%。

  在第二大题的4道填空题中,全对的有2人,全错的有5人,其余的均为半对半错。其中第11的正确率为90%,第13题错误率为80%。

  在第三大题的5道解答题中,有1人全对的,也没有全错的,得分率占80%的题有第19、20和21题,失分率占80%的题有22和24题。

  五、教学工作

  教学工作是学校各项工作的中心,也是检验一个教师工作成败的关键。半学期来,在坚持抓好新教学规律,充分运用学校现有的教育教学资源,大胆改革了明显效果:

  1参阅各种资料,力求深入理解教材,准确把握难重点。在制定教学目的时,非常注意学生的实际情况。教案编写认真,并不断归纳总结经验教训。

  2点,以愉快式教学为主,不搞满堂灌,坚持学生为主体,教师为主导、教学为主线,注重讲练结合。在教学中注意抓住重点,突破难点。

  3他人的宝贵经验,提高自己的教学水平。经常向经验丰富的教师请教并经常在一起讨论教学问题。坚持每周听

时,做到全批全改,重在订正,及时了解学生的学习情况,以便在辅导中做到有的放矢。

  六、改进措施

  在今后教学中应做如下改进:

  1、回归

和训练,使学生掌握必要的基础知识、基本技能和基本方法。同时加强学生对基本概念的理解,依据大纲要求,不脱离

、尊重学生个体差异,因材施教

  学生成绩良莠不齐,我们应该因材施教,特别是后进生,应给与更多帮助和关注,避免学生掉队的情况出现。同时鼓励优等生,使其不断进步。

  3、关注生活,加强应用

  使学生能用数学眼光认识世界,并能用数学知识和数学方法处理解决周围的实际问题。教学中要时常关注社会生活实际,编拟一些贴近生活,贴近实际,有着实际背景的数学应用性试题,引导学生学会阅读、审题、获取信息、解决问题。切实提高学生解决实际问题的能力。

  4、强化训练,提高计算能力

  在夯实基础的前提下,强化训练,不仅可以提高学生的解题计算能力,还能加深学生对基础知识的理解。对例题、习题、练习题和复习题等,不能就题论题,要以题论法,以题为载体,变换试题,探究解法,研究与其他试题的联系与区别,挖掘出其中蕴涵的数学思想方法等,将试题的知识价值、教育价值一一解析。


本文来源https://www.010zaixian.com/shiyongwen/zongjie/3920771.htm
以上内容来自互联网,请自行判断内容的正确性。若本站收录的信息无意侵犯了贵司版权,请给我们来信(zaixianzuowenhezi@gmail.com),我们会及时处理和回复,谢谢.