欢迎来到010在线作文网!

高中必修一数学知识点总结

总结 时间:2021-08-31 手机版

  第一章集合与函数概念

  一、集合有关概念

  1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.

  2、集合的中元素的三个特性:

  1.元素的确定性; 2.元素的互异性; 3.元素的无序性

  说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.

  (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.

  (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.

  (4)集合元素的三个特性使集合本身具有了确定性和整体性.

  3、集合的表示:

  { … }如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  2.集合的表示方法:列举法与描述法.

  注意啊:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集 N*或 N+整数集Z有理数集Q实数集R

  关于“属于”的概念

  集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作 a∈A ,相反,a不属于集合A记作 a?A

  列举法:把集合中的元素一一列举出来,然后用一个大括号括上.

  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.

  ①语言描述法:例:{不是直角三角形的三角形}

  ②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}

  4、集合的分类:

  1.有限集含有有限个元素的集合

  2.无限集含有无限个元素的集合

  3.空集不含任何元素的集合例:{x|x2=-5}

  高一数学必修一综合测试真题

  第I卷(选择题)

  1.设集合U={1,2,3,4,5},A={1,2,3},B={2,3,4},则U(A∩B)=

  A.{1,4,5}B.{2,3}C.{4,5}D.{1,5}

  2.设集合A={x|x2﹣4x+3≥0},B={x|2x﹣3≤0},则A∪B=

  A.(﹣∞,1]∪[3,+∞)B.[1,3]C.D.

  3.若全集U={1,2,3,4,5},集合M={1,2},N={2,3,4},则(UM)∩N等于

  A.{1}B.{2}C.{3,4}D.{5}

  4.已知集合A={﹣1,2},B={x∈Z|0≤x≤2},则A∩B等于

  A.{0}B.{2}C.φD.φ

  5.设集合A={x|2x≤8},B={x|x≤m2+m+1},若A∪B=A,则实数m的取值范围为.

  A.[﹣2,1)B.[﹣2,1]C.[﹣2,﹣1)D.[﹣1,1)

  6.已知集合A={1,2,3},B={0,1,2},则A∩B的子集个数为

  A.2B.3C.4D.16

  7.如果集合A={x|ax2﹣2x﹣1=0}只有一个元素则a的值是

  A.0B.0或1C.﹣1D.0或﹣1

  8.已知集合M={x|(x﹣1)=0},那么

  A.0∈MB.1MC.﹣1∈MD.0M

  9.设A={x|﹣1≤x<2},B={x|x<a},若A∩B≠,则a的取值范围是

  A.a<2B.a>﹣2C.a>﹣1D.﹣1<a≤2

  10.以下五个写法中:①{0}∈{0,1,2};②{1,2};③{0,1,2}={2,0,1};④0∈;⑤A∩=A,正确的个数有

  A.1个B.2个C.3个D.4个

  11.集合{1,2,3}的真子集的个数为

  A.5B.6C.7D.8

  12.已知3∈{1,a,a﹣2},则实数a的值为

  A.3B.5C.3或 5D.无解

  13.已知集合A={﹣1,1},B={x|ax+2=0},若BA,则实数a的所有可能取值的集合为

  A.{﹣2}B.{2}C.{﹣2,2}D.{﹣2,0,2}

  14.设所有被4除余数为k(k=0,1,2,3)的整数组成的集合为Ak,即Ak={x|x=4n+k,n∈Z},则下列结论中错误的是A.2016∈A0B.﹣1∈A3C.a∈Ak,b∈Ak,则a﹣b∈A0D.a+b∈A3,则a∈A1,b∈A2

  二、填空题

  16.已知集合A={﹣1,3,2m﹣1},集合B={3,m2}.若BA,则实数m= .17.对于任意集合X与Y,定义:①X﹣Y={x|x∈X且xY},②X△Y=(X﹣Y)∪(Y﹣X),(X△Y称为X与Y的对称差).已知A={y|y=2x﹣1,x∈R},B={x|x2﹣9≤0},则A△B=.

  18.函数y=的定义域为A,值域为B,则A∩B=.

  19.若集合为{1,a,}={0,a2,a+b}时,则a﹣b= .20.用M[A]表示非空集合A中的元素个数,记|A﹣B|=,若A={1,2,3},B={x||x2﹣2x﹣3|=a},且|A﹣B|=1,则实数a的取值范围为.

  三、解答题

  21.已知不等式x2+mx+3≤0的解集为A=[1,n],集合B={x|x2﹣ax+a≤0}.

  (1)求m﹣n的值;

  (2)若A∪B=A,求a的取值范围.

  22.已知函数f(x)的'定义域为(0,4),函数g(x)=f(x+1)的定义域为集合A,集合B={x|a<x<2a﹣1},若A∩B=B,求实数a的取值范围.

  23.已知A={x|x2+x>0},B={x|x2+ax+b≤0},且A∩B={x|0<x≤2},A∪B=R,求a、b的值.24.已知集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},(UA)∩B={﹣2},求实数p、q、r的值.

  25.已知元素为实数的集合S满足下列条件:①0S,1S;②若a∈S,则∈S.

  (Ⅰ)若{2,﹣2}S,求使元素个数最少的集合S;

  (Ⅱ)若非空集合S为有限集,则你对集合S的元素个数有何猜测?并请证明你的猜测正确.

  26.已知集合A={x|x2﹣3x﹣4≤0},B={x|x2﹣2mx+m2﹣9≤0},C={y|y=2x+b,x∈R}

  (1)若A∩B=[0,4],求实数m的值;

  (2)若A∩C=,求实数b的取值范围;

  (3)若A∪B=B,求实数m的取值范围.

  试卷答案

  1.A 2.D 3.C 4.B 5.B 6.C 7.D 8.D 9.C 10.B 11.C 12.B 13.D 14.D 16.1

  17.[﹣3,﹣1)∪(3,+∞)

  18.[0,2]

  19.﹣1

  20.0≤a<4或a>4

  21.(1)利用韦达定理,求出m,n,即可求m﹣n的值;

  (2)若A∪B=A,BA,分类讨论求a的取值范围.

  【解答】解:(1)∵不等式x2+mx+3≤0的解集为A=[1,n],

  ∴,∴m=﹣4,n=3,

  ∴m﹣n=﹣7;

  (2)A∪B=A,∴BA.

  ①B=,△=a2﹣4a<0,∴0<a<4;②B≠,设f(x)=x2﹣ax+a,则,∴4≤a≤,

  综上所述,0<a≤.

  22.【解答】解:要使g(x)有意义,则:0<x+1<4,

  ∴﹣1<x<3,

  ∴A={x|﹣1<x<3};

  ∵A∩B=B,

  ∴BA;

  ①若B=,满足BA,

  则a≥2a﹣1,解得a≤1;

  ②若B≠,则,

  解得1<a≤2;

  综上,实数a的取值范围是(﹣∞,2].

  23.【解答】解:集合A={x|x2+x>0}={x|x<﹣1或x>0}∴﹣1,2是方程x2+ax+b=0的两个根,

  ∴a=﹣1,b=﹣2

  即a,b的值分别是﹣1,﹣2.

  24.【解答】解:集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},

  ∴1+p+1=0,解得p=﹣2;

  又1+q+r=0,①

  (UA)∩B={﹣2},

  ∴4﹣2q+r=0,②

  由①②组成方程组解得q=1,r=﹣2;

  ∴实数p=﹣2,q=1,r=﹣2.

  本题考查了集合的定义与应用问题,是基础题目.

  25.【解答】解:(Ⅰ)2∈S,则﹣1∈S,∈S,可得2∈S;﹣2∈S,则∈S,∈S,可得﹣2∈S,

  ∴{2,﹣2}S,使元素个数最少的集合S为{2,﹣1,,﹣2,, }.

  (Ⅱ)非空有限集S的元素个数是3的倍数.

  证明如下:

  (1)设a∈S则a≠0,1且a∈S,则∈S, =∈S, =a∈S

  假设a=,则a2﹣a+1=0(a≠1)m无实数根,故a≠.

  同理可证a,,两两不同.

  即若有a∈S,则必有{a,, }S.

  (2)若存在b∈S(b≠a),必有{b,, }S.{a,, }∩{b,, }=.

  于是{a,,,b,, }S.

  上述推理还可继续,由于S为有限集,故上述推理有限步可中止,

  ∴S的元素个数为3的倍数.

  26.【解答】解:(1)由A中不等式变形得:(x﹣4)(x+1)≤0,

  解得:﹣1≤x≤4,即A=[﹣1,4];

  由B中不等式变形得:(x﹣m+3)(x﹣m﹣3)≤0,

  解得:m﹣3≤x≤m+3,即B=[m﹣3,m+3],

  ∵A∩B=[0,4],

  ∴,

  解得:m=3;

  (2)∵由C中y=2x+b>b,x∈R,得到C=(b,+∞),且A∩C=,A=[﹣1,4],

  ∴实数b的范围为b≥4;

  (3)∵A∪B=B,

  ∴AB,

  ∴,

  解得:1≤m≤2.

【高中必修一数学知识点总结】相关文章:

1.高中必修一知识点总结

2.高中政治必修二知识点总结

3.高中政治必修一知识点总结

4.高中政治必修二知识点总结

5.高中化学必修二知识点总结

6.高一数学必修五的知识点总结

7.高一数学必修2直线与方程知识点总结

8.高一数学必修一知识点总结


本文来源https://www.010zaixian.com/shiyongwen/zongjie/2502321.htm
以上内容来自互联网,请自行判断内容的正确性。若本站收录的信息无意侵犯了贵司版权,请给我们来信(zaixianzuowenhezi@gmail.com),我们会及时处理和回复,谢谢.