欢迎来到010在线作文网!

有理数的加法说课稿

实用文 时间:2021-08-31 手机版

有理数的加法说课稿

  教学目的

  1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.

  2.通过有理数的加法运算,培养学生的运算能力.

  教学重点与难点

  重点:熟练应用有理数的加法法则进行加法运算.

  难点:有理数的加法法则的理解.

  教学过程

  (一)复习提问

  1.有理数是怎么分类的?

  2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?

  3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?

  -3与-2;3与-3;-3与0;

  -2与+1;-+4与-3.

  (二)引入新课

  在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学有理数的加法运算.

  (三)进行新课 有理数的加法(板书课题)

  例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?

  两次行走后距原点0为8米,应该用加法.

  为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:

  1.同号两数相加

  (1)某人向东走5米,再向东走3米,两次一共走了多少米?

  这是求两次行走的路程的和.

  5+3=8

  用数轴表示如图 :略

  从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.

  可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.

  (2)某人向西走5米,再向西走3米,两次一共向东走了多少米?

  显然,两次一共向西走了8米

  (-5)+(-3)=-8

  用数轴表示如图 :略

  从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.

  可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.

  总之,同号两数相加,取相同的符号,并把绝对值相加.

  例如,(-4)+(-5),同号两数相加

  (-4)+(-5)=-( ),取相同的符号

  4+5=9把绝对值相加

  (-4)+(-5)=-9.

  口答练习:

  (1)举例说明算式7+9的实际意义?

  (2)(-20)+(-13)=?

  2.异号两数相加

  (1)某人向东走5米,再向西走5米,两次一共向东走了多少米?

  由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.

  5+(-5)=0

  可知,互为相反数的两个数相加,和为零.

  (2)某人向东走5米,再向西走3米,两次一共向东走了多少米?

  由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.

  就是 5+(-3)=2.

  (3)某人向东走3米,再向西走5米,两次一共向东走了多少米?

  由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.

  就是 3+(-5)=-2.

  请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?

  最后归纳

  绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0

  例如(-8)+5绝对值不相等的'异号两数相加

  85

  (-8)+5=-( )取绝对值较大的加数符号

  8-5=3 用较大的绝对值减去较小的绝对值

  (-8)+5=-3.

  口答练习

  用算式表示:温度由-4℃上升7℃,达到什么温度.

  (-4)+7=3(℃)

  3.一个数和零相加

  (1)某人向东走5米,再向东走0米,两次一共向东走了多少米?

  显然,5+0=5.结果向东走了5米.

  (2)某人向西走5米,再向东走0米,两次一共向东走了多少米?

  容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.

  请同学们把(1)、(2)画出图来

  由(1),(2)得出:一个数同0相加,仍得这个数.

  总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.

  有理数加法运算的三种情况:

  特例:两个互为相反数相加;

  (3)一个数和零相加.

  每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.

  (四)例题分析

  例1 计算(-3)+(-9).

  分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

  解:(-3)+(-9)=-12.

  例2

  分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调两个较大一个较小)

  解: 解题时,先确定和的符号,后计算和的绝对值.

  (五)巩固练习

  1.计算(口答)

  (1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);

  (5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;

  2.计算

  (1)5+(-22); (2)(-1.3)+(-8)

  (3)(-0.9)+1.5; (4)2.7+(-3.5)

【有理数的加法说课稿】相关文章:

1.有理数的加法说课稿

2.《有理数的加法》说课稿

3.有理数的加法试题

4.有理数的加法法则说课稿

5.《有理数的加法》说课稿范文

6.有理数的加法说课稿范文

7.《有理数的加法》数学说课稿

8.有理数的加法说课稿模板


本文来源https://www.010zaixian.com/shiyongwen/4297689.htm
以上内容来自互联网,请自行判断内容的正确性。若本站收录的信息无意侵犯了贵司版权,请给我们来信(zaixianzuowenhezi@gmail.com),我们会及时处理和回复,谢谢.