《除数是两位数的除法》教学反思
《除数是两位数的除法》教学反思1
本节课教学内容是除数是两位数的笔算除法,这节课讲的是“四舍”法计算。这是在学习了除数是整十数的除法的基础上学习的。重点是掌握笔算方法,帮助学生理解算理,难点是确定商的位置及试商的方法。
一、唤起回忆,构建框架
为了用知识的迁移方法学习,这节课我复习导入,题目是除数是一位数的笔算和用整十数除的口算。笔算时,引导学生讲解方法、算理,准确板书,为学习除数是两位数的计算方法,搭好了框架;口算使学生意识到有几个几十的思考方法,如210÷30,商只能是一位数,这样就为学习新知做好了铺垫。
二、理解算理,心中有数
在渗透算理这一环节中,我紧紧抓住“商是一位数就表示几个一”这一关键句,使学生理解,“表示几个一”的数一定是个位上的数,所以商要与被除数各位上的数对齐。
三、试商调商,按步计算
四舍第一次出现试商,又需要调商,是本节课的难点。计算430÷62,学生试着计算、交流,接着汇报。这时师生共同完成书写。第一步,利用刚学过的除数是整十数的方法,学生自然想到把62看作60,即“四舍”方法。第二步,试商,430里有几个60,就试商几,很快找到商7。并得出:被除数的前两位不够,就看前三位。第三步,计算积,交流7乘60还是62?由于真正的除数是62,所以是7×62的积,发现积比430还大,说明商7大了。第四步,调商,7大了,要调小,商6,可以。总结几步,帮助学生有序计算,头脑有清晰地步骤方法,不至于手忙脚乱。
四、练习有序,循序渐进
练习时,我先口算如30×( )〈282 帮助试商熟练。接着根据试商,调商练习。最后独立计算。学生对所学知识层层深入,把不会的可能性扼杀在摇篮里。同时对后进生也是一次讲解回顾。
在上课过程中,我发现,要相信学生,交给学生处理问题,需要时老师再引导点拨即可。这样学生常常能积极投入角色,课堂是在学生的思维掌控中,难点容易暴露,问题自然解决在课堂。
《除数是两位数的除法》教学反思2
本单元的教学内容、是小学生学习整数除法的重要一部分内容,它是在学习了多位数乘一位数、除数是一位数的除法的基础上进行教学的。本节课的教学重点是确定商的书写位置,除的顺序以及试商的方法,潜移默化理解除数是两位数除法的计算法则,帮助学生解决笔算的算理;难点是试商的方法。
学生初步学习除数是两位数的笔算除法,用四舍五入把除数看作和它接近的整十数进行试商后,学生试商时困难较大,在教给学生基本方法的同时,还应适当补充一点试商的小窍门。比如当除数的末尾数是1或9时,用四舍五入法一次试商即可成功。而当除数的末尾数是2、3、6、7、8时,在试商过程中,一般都要调商。当除数末尾数是4或5时,往往要经过多次调试方能求出商数来。
在此基础上,总结出了①同头试商法:如451÷47这道题,因为除数和被除数的首位相同,而被除数的前两位小于除数,可以直接商9,比较简便。②折半商五法:如136÷26这道题,因为被除数的前两位接近除数的一半,所以直接商5,比较简便。
总之,在除数是两位数除法的试商教学中,“四舍五入”法、口算法、同头试商法和折半商五法可视其情况挑选应用,可以互相弥补,相得益彰,得到最佳教学效果,提高学生计算的正确率和速度。
《除数是两位数的除法》教学反思3
除数是两位数的除法,是小学生学习整数除法的最后阶段,教学重点是确定商的书写位置,除的顺序及试商的方法,帮助学生解决笔算的算理;难点是试商的方法。
学生以前学习过除数是一位数商是一位数或两位数的除法,教学时让学生回忆以前的知识,特别是除法的笔算方法,然后学习除数是两位数的除法的笔算方法,让学生在原有知识的基础上理解商的书写位置,除的顺序等基本问题,然后着重解决试商的问题。教材中分层次、分阶段内化了重点,分散了难点。
从这一单元的教学中,我意识到,教材只是一个教学工具,应该是“用教材”,而不是“教教材”。在使用过程中,应该结合学生实际,灵活的使用教材,可以在某些内容上进行适当的增、改。学生初步学习除数是两位数的笔算除法,用四舍五入把除数看作和它接近的整十数进行试商后,学生试商时困难较大,在教给学生基本方法的同时,还应适当补充一点试商的小窍门。比如当除数的末尾数是1或9时,用四舍五入法一次试商即可成功。而当除数的末尾数是2、3、6、7、8时,在试商过程中,一般都要调商。当除数末尾数是4或5时,往往要经过多次调试方能求出商数来。在这种情况下,四舍五入法就显得不适应了,因为所取的近似数与原除数误差较大。尽管教学时已给学生总结出了“用四舍”时,因把除数看小了,初商容易偏大,试商时可比原来想的商小1,而“五入”时,因把除数看大了,初商容易偏小,试商时可比原想的商大1。而学生在具体的计算中,还是感到很困难,造成了试商速度慢。针对这种情况,练习课中,在学生应用“四舍五入”法和口算方法试商的基础上,还要有针对性的帮助学生提高灵活试商的方法,如:4512÷47136÷26首先让学生确定商是几位数,初商在哪位,然后让学生讨论:被除数、除数有什么特点,该怎样试商?在此基础上,总结出了①同头试商法:如4512÷47这道题,因为除数和被除数的首位相同,而被除数的前两位小于除数,可以直接商9,比较简便。②折半商五法:如136÷26这道题,因为被除数的前两位接近除数的一半,所以直接商5,比较简便。学生对此很感兴趣,积极投入到学习当中,有效的提高了学生试商的速度。
总之,在除数是两位数除法的试商教学中,“四舍五入”法、口算法、同头试商法和折半商五法可视其情况挑选应用,可以互相弥补,相得益彰,得到最佳教学效果,提高学生计算的正确率和速度。
本文来源:https://www.010zaixian.com/shiyongwen/4099773.htm