高一数学幂函数教学计划
教学目标:
知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用.
过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质.
情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性.
教学重点:
重点从五个具体幂函数中认识幂函数的一些性质.
难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律.
教学程序与环节设计:
材料一:幂函数定义及其图象.
一般地,形如 的函数称为幂函数,其中 为常数.
幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种形式定义的函数,引导学生注意辨析.
下面我们举例学习这类函数的`一些性质.
作出下列函数的图象:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所图象,体会幂函数的变化规律.
定义域
值域
奇偶性
单调性
定点
师:引导学生应用画函数的性质画图象,如:定义域、奇偶性.
师生共同分析,强调画图象易犯的错误.
材料二:幂函数性质归纳.
(1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,1);
(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;
(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.
例1、求下列函数的定义域;
例2、比较下列两个代数值的大小:
[例3]讨论函数 的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性.
练习
1.利用幂函数的性质,比较下列各题中两个幂的值的大小:
2.作出函数 的图象,根据图象讨论这个函数有哪些性质,并给出证明.
3.作出函数 和函数 的图象,求这两个函数的定义域和单调区间.
4.用图象法解方程:
1.如图所示,曲线是幂函数 在第一象限内的图象,已知 分别取 四个值,则相应图象依次为:.
2.在同一坐标系内,作出下列函数的图象,你能发现什么规律?
【高一数学幂函数教学计划】相关文章:
3.高一数学教学计划
6.幂函数说课课件
7.《幂函数》说课稿
本文来源:https://www.010zaixian.com/shiyongwen/2742136.htm