数学的概念和定理比较多,而且比较抽象,数学的证明要进行逻辑推理,做数学题需要掌握概念、定理和方法,这些使得不少学生感到数学比较难学。通常的数学教学一开始给出数学概念的定义,接着写出有关的定理,然后对定理进行证明。这种教学方式可以让学生学到数学的概念和定理,可以训练学生的逻辑推理能力。但是学生不知道概念是怎么提出来的,不知道定理是怎么发现的,因此培养不出学生的创新能力。本人根据四十多年的教学和科研工作的经验,用数学的思维方式教数学就可以既使数学比较好学,又可以在教学的过程中培养学生的创新能力。
数学的思维方式是一个全过程:观察客观现象,抓住主要特征,抽象出概念;提出要研究的问题,运用“解剖麻雀”、直觉、归纳、类比、联想和逻辑推理等进行探索,猜测可能有的规律;经过深入分析,只使用公理、定义和已经证明了的定理进行逻辑推理来严密论证,揭示出事物的内在规律,从而使纷繁复杂的现象变得井然有序。
用数学的思维方式教数学,我们的主要做法有以下几点。
1.观察客观现象自然而然地引出概念,讲清楚为什么要引进这些概念
线性空间的概念是高等代数中最重要的概念之一。我们让学生观察几何空间(以定点0为起点的所有向量组成的集合)中有加法和数量乘法运算,并且满足8条运算法则;向量的坐标是3元有序实数组,为了用坐标来做向量的加法和数量乘法运算,很自然地在所有3元有序实数组组成的集合R3中引进加法和数量乘法运算,并且也满足8条运算法则。几何空间是3维空间,时一空空间是4维空间。有没有维数大于4的空间?为了对数域K上的n元线性方程组直接从系数和常数项判断它有没有解和有多少解,从矩阵的初等行变换把线性方程组的增广矩阵化成阶梯形矩阵可以判断线性方程组的解的情况受到启发,很自然地在所有n元有序数组组成的集合Kn中引进加法和数量乘法运算,并且也满足8条运算法则。Kn就是一个n维空间。我们抓住几何空间,R3,Kn的共同的主要特征:“有加法和数量乘法运算,并且满足8条运算法则”,便自然而然地引出了线性空间的概念。为了使线性空间为数学、自然科学和社会科学的研究提供广阔天地,需要把线性空间的结构搞清楚。
几何空间的结构是,任意取定3个不共面的向量,空间中任一向量都可以由它们线性表出,并且表示方式唯一。由此受到启发,对于线性空间V,如果有一族向量S使得V中每一个向量都可以由S中有限多个向量线性表出,并且S是线性无关的(这保证了表法唯一),那么称S是V的一个基。基是研究线性空间的结构的第一条途径。
几何空间中给了过定0的一个平面和过定点0与n相交的一条直线1。在n上取两个不共线的向量dpd2,在1上取一个非零向量d3,则^丸是几何空间的一个基。于是几何空间的每一个向量可以唯一地表示成n上的一个向量与1上的一个向量的和。由此引出了线性空间V的子空间的直和的概念;猜测并且证明了线性空间V等于它的若干个子空间%,…,Vm的直和当且仅当%的一个基Vm的一个基合起来是V的一个基。直和分解是研究线性空间的结构的第二条途径。
几何空间的每一个向量对应于它在给定的一个基下的坐标是几何空间到R3的一个双射,并且它保持加法和数量乘法运算。由此受到启发,引出了线性空间的同构的概念;猜测并且证明了数域K上的n维线性空间都与Kn同构。线性空间的同构是研究线性空间的结构的第三条途径。
几何空间J中给了过定点0的一个平面&,则与%平行或重合的所有平面给出了几何空间J的一个划分。由此受到启发,数域K上的线性空间V中,给了一个子空间W,在V上建立一个二元关系:13?a当且仅当13-aGW。容易证明这是V上的一个等价关系。于是所有等价类组成的集合就给出了V的一个划分,这个集合也称为V对于W的商集,记作V/W。在V/W中可以规定加法和数量乘法运算,并且满足8条运算法则,从而V/W成为数域K上的一个线性空间,称它为V对于W的商空间。几何空间J中与过定点0的平面&平行或重合的所有平面组成的集合是J对于A的商空间。过点0作与&相交的一条直线1,则把与&平行或重合的每一个平面对应于这个平面与1的交点是商空间J/&到直线1的一个双射,并且它保持加法和数量乘法运算,从而商空间J/&与直线1同构。于是
dim(J/兀0)=dim1=1=3-2=dimJ-dim兀0.
由此受到启发,我们猜测并且证明了对于数域K上的n维线性空间V有
dim(V/W)=dimV-dimW.
这使得我们可以利用数学归纳法证明线性空间中有关被商空间继承的性质的结论。
在商空间J/&中取一个基令1是过点0且方向为兩的直线,则J=7TQ?1。由此受到启发,我们猜测并且证明了对于数域K上的线性空间V和它的一个子空间W,如果商空间V/W有一个基Pi+W,…,pt+w,令U是由V中的向量组p!,…,pt生成的子空间,那么V=W?U,并且p!,…,pt是U的一个基。这表明只要商空间V/W是有限维的,并且知道了商空间V/W的一个基,那么线性空间V就有一个直和分解式。
上述两方面表明商空间是研究线性空间的结构的第四条途径。
2.提出要研究的问题,探索并且论证可能有的规律
高等代数研究的一个重要问题是对于域F上n维线性空间V上的线性变换A,能不能找到V的一个基,使得A在此基下的矩阵具有最简单的形式?
如果能找到V的一个基使得线性变换A在此基下的矩阵是对角矩阵,那么称A可对角化。直接计算可得,A可对角化的充分必要条件是A有n个线性无关的特征向量。由此可得,A可对角化的充分必要条件是V能分解成A的特征子空间的直和:…?V、,其中,▽&是A的全部不同的特征值。
对于不可对角化的线性变换A,它的最简单形式的矩阵表示是什么样子?从A的特征子空间的定义受到启发,引出A的不变子空间的概念。类比A可对角化的充分必要条件是V能分解成A的特征子空间的直和,我们去探索:如果V能分解成A的不变子空间的直和,那么在每个不变子空间中取一个基,它们合起来是V的一个基,A在此基下的矩阵是一个分块对角矩阵。于是解决A的最简单形式的矩阵表示的问题分为两步。
第一步去寻找A的非平凡不变子空间,使得它们的和是直和,并且等于V。利用“如果V上的线性变换B与A可交换,那么B的核KerB是A的不变子空间”这个结论,对于域F上的任意一个一元多项式f(x),不定元x用A代入,得到的f(A)与A可交换,从而Kerf(A)是A的不变子空间。fjx)与f2(x)满足什么条件才能使Kerfi(A)+Kerf2(A)是直和呢?这只要Ker4(八)门Kerf2(A)=0?直觉猜测若fjx)与f2(x)互素,是否有可能满足这个要求?此时存在u(x),v(x)eFW使得u(x)f2(x)=1。于是不定元X用A代入便得到u(A)_+,讲)=1.
从而若eeKerfi(A)nKerf2(A),贝ijP=IP=u(A)fi(A)P+v(A)f2(A)13=0。因此
Kerf]_(A)flKerf2(A)=0,从而Ker(A)+Kerf2(A)是直和。这个和等于什么呢?从上面的恒等变换I的分解式受到启发,令任取aGKerf(A),有
a=Ia=U(A)fi(A)a+v(A)f2(A)a.
令a广V(A)f2(A)a,a2=u(A)f1(A)a,则a=aa2,JLf1(A)a^=0,f2(A)a2=0。因此Kerf(A)=Kerf^A)?Kerf2(A)。由此受到启发,设fi(x),…,fs(x)eF[x],且它们两两互素,令fOOzfJx)…fs(X),则用数学归纳法可以证明Kerf(A)=Kerfx(A)?...?Kerfs(A).
由于KerO=V,因此若f(x)使得f(A)=0,贝ljV=Kerfi(A)?…?Kerfs(A).
这就把V分解成了A的若干个非平凡不变子空间的直和。
域F上的一个一元多项式f(;x)如果使得f(A)=0,那么称f(;x)是A的一个零化多项式。容易证明域F上的n维线性空间V上的任一线性变换A都有零化多项式。还可以证明线性变换A的特征多项式就是A的一个零化多项式。事物的临界状态往往决定事物的本质。于是我们考虑A的所有非零的零化多项式中次数最低且首项系数为1的多项式m(;A),称它为A的最小多项式。如果m(A)在F[A]中的标准分解式为m(2)=(A-Al)k---(A-A^)ls,那么V=Ker(A-I)*i?…?Ker(A-XSI)^.
记Wj=Ker((A-XjI)1),则V=?...?Ws。于是在Wj中取一个基,j=1,2,…,s,它们合起来是V的一个基,A在此基下的矩阵A是一个分块对角矩阵AsdiagfAi,…,As},其中Aj是A在Wj上的限制A|Wj在Wj的上述基下的矩阵。
第二步工作是在Wj中找一个合适的基,使得A|Wj在此基下的矩阵Aj具有最简单的形式。由于V=VW?...?Ws,因此可以证明A的最小多项式m(A)是A|Wj的最小多项式mj(A),j=1,2,…,s,的最小公倍式。利用这个结论和唯一因式分解定理可以得出,A|Wj的最小多项式从而A|Wj=XjI+Bj,其中Bj是Wj上的幂零变换,其幂零指数为lj。于是只要在Wj中找到一个合适的基使得Bj在此基下的矩阵Bj具有最简单的形式,则A|Wj在此基下的矩阵Aj,I+Bj也就最简单了。这样问题归结为去研究幂零变换的最简单形式的矩阵表示。
设B是域F上的r维线性空间W上的一个幂零变换,其幂零指数为1,用Wo表示B的属于特征值0的特征子空间。对于任意aGW且a#0,一定存在正整数t使得Bta=0,而Bt-ia乒0。于是Bt-ici,Ba,a线性无关,从而它是子空间的一个基。我们把称为B-强循环子空间,其中Bt_1aeW0。B在上的限制在基Bt_1a,Ba,a下的矩阵是一个Jordan块,其主对角元全为0。我们探索W是否能分解成若干个B-强循环子空间的直和?若能够这样分解,则由每个B-强循环子空间的第一个基向量组成的向量组线性无关;又的一个基中每个向量都属于某个B-强循环子空间,因此我们猜测W能分解成dmiWo个B-强循环子空间的直和。我们利用商空间对于研究线性空间的结构的两个方面,用数学归纳法证明了这个猜测是真的。从而在每个B-强循环子空间中取上述这样的基,它们合起来是W的一个基,B在此基下的矩阵为由若干个Jordan块组成的分块对角矩阵,称它为B的Jordan标准形。进而得到:域F上的n维线性空间V上的线性变换A如果它的最小多项式m(;入)在F[A]中能分解成一次因式的乘积,那么存在V的一个基,使得A在此基下的矩阵为由若干个Jordan块组成的分块对角矩阵,称它为A的Jordan标准形。由于主对角元为的t级Jordan块的最小多项式为(X-Xj)1,因此根据“分块对角矩阵A=diag{Al5…,As}的最小多项式m(人)是Aj的最小多项式mj(A),j=1,2,…,s,的最小公倍式”便得到,如果A有Jordan标准形J,那么J的最小多项式m(人)是一次因式的乘积,m(A)也是A的最小多项式。从而如果A的最小多项式)在F[A]中的标准分解式有次数大于1的不可约因式,那么A没有Jordan标准形。我们用类比的方法证明了此时A有有理标准形。这样我们就彻底解决了域F上n维线性空间V上的线性变换A的最简单形式的矩阵表示的问题。
本文来源:https://www.010zaixian.com/shiyongwen/2280019.htm