一、科学史能够促进学生对科学本质的理解
1.科学史与科学的动态性和发展性
科学是一种动态、不断进步和持续变化的过程,而并非是一成不变的,即科学是一种动态过程,而不仅仅是一种产品.有了这些科学史内容,学生就容易理解教科书中所呈现出的科学不是静态的,而是随着社会发展不断变化的,现在所学习的科学知识只是科学发展历程中的特定阶段的成果,在将来还有可能发生变化和得到进一步发展.因此,科学史的主要作用是为学生展示一种关于科学本质的完全不同的观点,而不仅仅是让学生通过学习当前的科学理论、进行实验操作和分析实验数据来理解科学的本质.例如,学生在学习“光合作用”时,如果没有相关科学史的介绍,学生所获得的知识只是该领域当前的研究成果,至于这些成果是如何获得的,以及还有哪些有待进一步研究的问题,学生很难获取这方面的信息,这将导致学生对“光合作用”的认识只是停留在静态的层面,无法认识到科学的发展过程,进而限制其思维发展.经由科学史的学习,如果学生将来从事相关领域的研究,他们的研究视野在某种程度上会得到拓宽,而这反过来又会影响该学科的发展.因此,从这一点上讲,科学史对学生理解科学的动态和发展性本质,以及科学的长远发展都将是有益的.
2.科学史与科学研究方法
科学的发展过程总是依赖于研究方法的不断更新,根据其发展的不同阶段所依赖的技术及其相应的成果,可以将其视作是基于实证研究的发展过程.在科学教育中,学生不仅应该学习已知的科学知识,还应该经历科学探究的过程.这种探究过程既包括科学家曾经实施的实验或教师设计的类似实验,也包括教师引导学生对科学史资料的分析.不管采用何种形式的探究,其根本宗旨是训练学生的探究能力和解决问题的能力.当前的科学课程虽然强调科学过程技能的训练,学生可能有机会体验实验设计过程并学习实验操作能力,但是对于这些科学过程技能在科学知识的构建过程中扮演何种角色并未进行深入思考.因此,这种课程只是以脱离情境的方式教给学生科学过程技能,未能向他们提供认识和探讨科学本质的机会.而强调依托特定情境的教学正说明了科学史在这方面所特有的教育价值.通过展示科学史中不同研究方法的研究成果,可以使学生感受到科学方法对于科学发展的重要性.同时,学生还可以比较各种不同的研究方法,理解各自的优点及其局限性,从而为其科学思维的发展搭建平台.例如,在教授高中生物学中“DNA是主要遗传物质”时,教师可以先向学生展示艾弗里的肺炎双球菌实验,通过问题引导学生充分理解该实验的设计原理和目的,然后得出初步结论“R型和S型肺炎双球菌中存在某种转化因子”.基于这一结论,再进一步引导学生思考“这种转化因子是什么呢?”教师可以直接呈现格里菲斯的实验设计和赫尔希的噬菌体侵染实验,通过讨论和引导,确定遗传物质主要是DNA.在这一教学过程中,教师通过引导学生分析相关的科学史材料,使他们逐渐理解实验设计的基本原则.这对他们更加深刻地理解科学的本质是必不可少的.在教学中,教师还可以根据科学史设计特定的教学活动,并非将科学史内容像讲述历史故事那样直接呈现给学生.例如,在上面的教学内容中,教师引导学生分析完艾弗里的肺炎双球菌转化实验后,进一步思考“这种转化因子是什么呢?”接下来,教师不要急于展示格里菲斯和赫尔希的实验设计,而是让学生以小组为单位尝试设计实验回答这一问题,教师为他们提供必要的教学支持,例如,通过问题串引导逐步思考解决方案.通过这种基于科学史特定设计的教学活动,既可以使学生理解科学研究的设计原则,还可以训练他们设计实验和解决问题的能力.
3.科学史与科学事业
科学的发展过程是不同时代诸多科学家、社会学家等多个研究群体共同努力的过程,是一项人类事业.科学史正是反映这一科学本质的重要教学媒介之一.科学史材料一方面可以呈现众多科学家在同一研究领域的不同研究成果,例如,在细胞膜结构模型的研究过程中,至少涉及欧文顿(E。Overton)、戈特(E。Gorter)和格伦德尔(F。Grendel)、弗雷(L。D。Frye)和埃迪登(H。Edidin)、桑格(S。J。Singer)和尼克森(G。Nicolson)等科学家的重要研究贡献.这可以使学生意识到当前的科学成果是现代科学家在前人研究的基础上的修正和完善,这将影响他们对科学的认识.作为社会中的个体,任何科学家都需要与同行及其研究成果有直接或间接的交流,只有在这种交互作用下,才有可能取得新的科学研究成果.另一方面,科学史还能使学生意识到某些科学家对于新发现的抵制,这也是科学社会学家和科学史学家所研究的重要主题.此外,将科学史恰当地整合到科学课程中还能展示在科学发展过程中所经历的困境和曾经受到的批评.科学研究、科学家的研究动机等相关内容,不仅可以用来解释科学的本质和优势,同时还应呈现其不足之处.这也是科学得以持续不断发展的原动力所在.因此,对于科学是一项人类事业这一观点的理解,将有助于学生更加充分地理解科学的本质,这是科学史无可替代的教育价值.
二、科学史能促进学生的概念转变和知识建构
人们每时每刻都在通过观察构建和重构他们对于自然界的看法,即意义建构.学生的学习也是一种类似和持续的意义建构过程.通常认为这种心理过程从本质上讲与专业人员构建新知识的认知过程是相似的.知识的建构过程是人类形成共同意义的复杂过程.如果能够很好地理解一个人是如何获取和组织知识的,那么就能够理解该学科领域的学者所构建的知识结构.在科学教育领域,许多研究者开始尝试运用各种教学材料或教学策略来帮助学生认识科学知识的建构过程.例如,皮亚杰(Piaget)提出的临床访谈研究法(clinicalinterview)、凯利(Kelly)的方格分析法(repertorygrid)和诺瓦克(Novak)的概念图法等.后来,人们又提出运用科学史教学的方法来帮助学生构建知识.
1.科学史有利于学生基于真实情境建构知识
当前的科学教育强调科学是“辩护知识”的过程,并且验证已知的内容,而对于科学知识是如何产生的则关注不够.科学知识的本质包含了两个方面,“辩护知识”是其中之一,强调我们已经知道了哪些知识;另外一个方面是“发现知识”的过程,主要突出已知的知识是如何知道的.在科学课程中融入科学史内容,能够帮助学生认识到科学发展过程中不同事件之间的相互联系,而学生往往容易忽视或意识不到这一点.例如,在化学课程中,在讲到阿尔弗雷德维尔纳(AlfredWerner)的配位理论(co—ordinationtheory)时可以为学生提供如下科学史材料:19世纪上半叶,确定分子重量的唯一方法是测量蒸汽密度.直到后来法国化学家Raoult和荷兰化学家Van’sHoff对溶液依数性的研究,人们才发现没有一种可靠的方法可以用来测定非挥发性化合物的分子质量.因此,人们通过分析挥发性物质Fe2Cl6认为CoCl3含有Co2Cl6组分,瑞典化学家Blomstrand从而推测钴氨络合物是二聚体.直到1890年丹麦化学家S。M。Jorgensen和1892年美国化学家J。Petersen通过冰点和测量金属氨合物(Blomstrand最初将其分子式二等分)溶液的电导率,推演出单体分子量.既然根据配位数6提出的八面体构型是Werner理论的基本假定,那么如果没有Jorgensen对Blomstrand分子式的二等分(例如,将Co2Cl612NH3二分为Co2Cl66NH3),也就不会产生配位理论了.通过阅读和分析这些材料,学生可以认识到配位理论的提出并不是一蹴而就的,需要不同时代的众多科学家不断地修改和完善.融入科学史的科学课程能以更加真实的情境呈现科学的重要发现,学生不再将科学视作伟人创造的完全独立的事件,而是能够将这些事件有机地联系在一起,从科学发展的逻辑视角认识科学发展过程,有利于其理解科学知识的构建,并将其整合到自己的认知框架中.此外,在科学课程中引入科学史不仅是介绍科学家个人或他们的研究成果,而更重要的是展示科学知识的不断积累过程.这种真实的知识产生背景对于学生构建科学知识是一种有效的情境支持.
2.科学史有助于揭示学生的前科学概念,并促进概念转变
科学知识可以分为果性知识(ready—madescienceknowledge)和过程知识(science—in—the—makingknowledge).其中,果性知识是指科学事实或对客观现实的陈述,是无可争议的,也与产生这种知识的特定情境无关.而过程知识则是具有争议性和不稳定性的知识.学生学习过程知识的过程是一个主动构建的过程,需要提供具有吸引力的情境,以使他们有机会参与小组讨论和实验活动,进行口头和书面交流,解决问题,并进行持续的个人反思.学生在学习科学的过程中,他们的某些观点与前范式时期科学家的观点(pre—paradigmaticthinking)有可能是相似的.而学生持有的某些前科学概念或错误概念与历史发展过程中某个时期的认识是类似的,这就使得科学史成为预测学生在构建概念过程中可能遇到的困难的一个有用的工具.例如,在光合作用的研究历程中,科学家曾一度认为构成植物体的主要物质来源于土壤中的营养物质,这种观点在现在看来是错误的.而低年级学生在接受正式教学之前也存在类似的观点,这就是学生所持有的前科学概念.如果教师能够充分理解科学概念是如何演变和发展的,那么他们就能够预测学生在学习这些概念时可能遇到的困难,这可以帮助教师在备课时将这些因素考虑在内,设计有效的教学活动和创建有效的学习环境,以促进学生的学习.在这种情况下,这种困难不能视为学生学习真正的障碍,而应将其转化为有意义学习的有效工具.科学史可以提供恰当的素材,以展示科学知识的修正与完善、排斥与重述,及其相对性并依赖于当时的社会等研究背景.与自我评判个人所持有的前科学概念相比,学生更容易先评判科学发展史上的科学知识或模型.这也为学生继续意识到自己认知结构中存在的前科学概念,进而创造认知冲突奠定了良好的基础.例如,教师可以通过提问的方式,让学生说出自己对“构成植物体的主要物质来自于哪里?”这一问题的观点,暴露其前科学概念.然后,再通过讨论和分析科学史材料,让他们分析历史上科学家所持有的观点,通过讨论,逐渐理解自己原有认识是不科学的,而且还与科学家认识事物的过程是相似的',从而帮助其建立科学概念,实现概念转变.同时,还能让学生认识到自己的这种错误认识具有普遍性,通过材料分析,可以形成科学概念.由此看来,学生概念的发展过程与科学史中科学概念的演变过程是平行的,科学史教学可以帮助学生转变观念和构建科学概念.
本文来源:https://www.010zaixian.com/shiyongwen/2278213.htm