硅基太阳电池技术
硅基太阳电池是目前商业化最成熟的太阳电池。根据硅的晶体结构,硅基太阳电池可以分为晶体硅和非晶硅电池。其中晶体硅又可以分为单晶硅和多晶硅两种,单晶硅电池转换效率高,稳定性好,但成本较高;多晶硅电池效率略低于单晶硅电池,但具有高性价比,已经取代单晶硅成为最主要的光伏材料。原料硅片的成本约占晶硅电池组件总成本的50%以上,减少硅材料的用量有望有效降低生产成本,因此除了高效化,薄膜化也是晶硅太阳电池发展的方向,区别于传统硅太阳电池的薄膜硅太阳电池得到了大家的关注。目前多晶硅薄膜电池效率达到10%,非晶硅薄膜电池制作的能耗低、工序简单、成本低、适合工业化大面积生产。
1晶体硅太阳电池
晶体硅电池的结构设计和工艺技术的发展都是围绕着提高电子的收集率和增大入射光的利用率来展开的,并表现在晶体硅电池制备过程中的各种技术的利用上。
(1)去除损伤层
硅片在切割过程中会产生大量的表面缺陷,导致表面的质量较差和电池制造过程碎片增多,还会导致电池工作时表面复合几率增大,因此在电池制备前必须将切割损伤层去除,一般采用酸或碱腐蚀,腐蚀的厚度一般约10μm。
(2)制绒
制绒就是把相对光滑的硅片表面通过酸或碱腐蚀,使硅片表面变得凹凸不平增加受光面积并对光产生漫反射,这样可以减少直射损失提高太阳光的利用效率。计算表明金字塔形角锥体的受光面积可比光滑平板增加1.732倍。单晶硅具有各向异性的碱腐蚀特性,可以采用氢氧化钠和乙醇的混合碱溶液腐蚀单晶硅表面,形成无数的金字塔结构,利用制绒工艺通常能够将单晶硅表面的反射率降到10%以下。对于多晶硅来说,由于材料缺乏各向异性,因此表面制绒比较复杂,目前有机械刻槽法、反应离子刻蚀、酸法腐蚀等,多晶硅的制绒工艺仍是国内外研究的热点。
(3)扩散制结
扩散的目的在于形成PN结。由于硅基太阳电池的原料硅片采用P型硅,扩散制结一般采取三氯氧磷气体携带源方式用磷做N型掺杂,采用磷扩散可以实现高浓度掺杂,有利于降低电池的串联电阻从而提高其填充因子,这个工艺的特点是生产效率高,有利于降低成本。大型的生产厂家一般用20.32cm(8英吋)扩散炉进行硅片的扩散、采用大口径石英管恒温区长,可以提高扩散薄层电阻均匀性。目前扩散炉的石英管口径达270mm。除了均匀扩散制结工艺外,选择性扩散制结工艺也是一种重要的产业化生产技术,这种技术采用在栅线下进行扩散的方式,不仅能保证低的接触电阻和好的填充因子,而且能够减小接触造成的前表面复合损失。
(4)边缘刻蚀
在扩散制结过程中硅片的周边表面也会形成了扩散层,这种扩散层将导致上下电极短路,由于任何微小的局部短路都会使电池并联电阻下降,因此必须干净地除去硅片周边表面的扩散层,目前工业化生产常用等离子刻蚀去除硅片周边表面的扩散层。
(5)沉积减反射膜
为了使硅基太阳电池更有效地获得太阳光辐射,表面都要制备一层减反射膜,减少表面的反射损失。目前常用的减反射膜有TiO2,SiO2和SiN及其组合,在商业化生产中SiN减反射膜一般都采用等离子增强化学气相沉积(PECVD)技术制作,这种方法利用SiH4与NH3反应在硅片表面沉积一层厚约75nm的SiN,反射率可以降低到3%以下。由于沉积中生成的原子氢,可以很好的钝化硅表面悬挂键,因此PECVD还能起到很好的钝化效果从而可以提高载流子迁移率,而且SiN层具有良好的绝缘性和致密性,可以阻止杂质原子,特别是Na原子渗透进入电池基体。PECVD沉积减反射膜技术的采用大大提高了多晶硅电池的光电转换效率,是多晶硅电池商业化生产的关键性技术,目前多晶硅电池的产量已经超过单晶硅电池。
(6)制备电极
电极的制备不仅决定了发射区的结构,而且也决定了电池的串联电阻和电池表面被金属覆盖的面积,因此是硅基太阳电池生产过程中的一个重要步骤。目前,硅基太阳电池的电极制备普遍采用丝网印刷法,所用的丝网细栅线为110~150μm,主栅为1.5~2.0mm,由于电极的存在有遮光的效果导致太阳电池效率降低的损失在8%左右,因此如何进一步减小电极宽度是当前研究的热点。
通过攻关制备工艺流程中的某些环节,制备出许多高效的太阳电池。例如新南威尔士大学的钝化发射区背局部扩散(PERL)电池[1],斯坦福大学的背面点接触(PCC)电池以及弗朗霍夫研究所的局域化背表面场(LBSF)电池等都是单晶硅高效电池的典型代表。在钝化发射区(PESC)电池和钝化发射区背表面(PERC)电池基础上研发出来的PERL电池(结构如图1)目前保持着单晶硅电池效率的最高纪录。PERL电池采用背面点接触来代替PESC电池的整个背面铝合金接触,并在背面接触点下增加了一个浓硼扩散层,可以减小金属接触电阻,与PERC电池相比由于硼扩散层减小了有效表面复合,接触点间距可以从2mm减小到250μm,接触孔径从200μm减小到10μm而不增加背表面的复合,从而大大减小了电池的串联电阻。4cm2大小的PERL电池在AM1.5光照条件下,转换效率达到25%[1]。PERL电池的另一个特点是具有极好的陷光效应:PERL电池具有一种倒金字塔和背反射器(铝层覆盖的背SiO2层)组合而成的陷光结构,光在电池内部往返多次大大增加了传输路径,尤其对于弱吸收光有利。2009年无锡尚德的PERL电池已经实现了量产,开发的PlutoTM(冥王星)太阳电池片效率突破性地提高到了19%,HiPerforma单晶组件转换效率超过16%[16]。PCC电池和LBSF电池结构与PERL电池类似,也采用TCA氧化层钝化和倒金字塔结构,不过5μm接触孔径的金属电极成点状设计在电池的背面,基区也做成同样的形状,这样减小了背面复合,取得22.3%的转换效率。LBSF电池采用局部铝扩散来制作表面接触,2cm×2cm电池效率达到23.3%。
在高效多晶硅太阳电池的研究中,一般认为材料中的各种缺陷,如晶界、位错、微缺陷,和材料中的杂质碳和氧,以及工艺过程中玷污的过渡族金属是电池转换效率较低的关键原因,因此研究铸造多晶硅中缺陷和杂质规律,以及采用合适的吸杂、钝化工艺是进一步提高多晶硅电池效率的关键,另外寻找合适的铸造多晶硅表面织构化方法也是目前低成本制备高效率电池的重要工艺。在这些方面,弗朗霍夫研究所、乔治亚理工学院、新南威尔士大学以及Kysera公司的工作具有一定的代表性。弗朗霍夫研究所实验室制备的多晶硅太阳电池的转换效率保持最高纪录20.4%[3]。乔治亚理工学院使用电阻率0.65(Ωcm),厚度280μm多晶硅片制作电池,n+发射区的形成和磷吸杂结合,并加双层减反射膜,1cm2电池的效率达到18.6%。新南威尔士大学采用类似PERL电池的工艺,但是前表面织构化不是倒金字塔,而是用光刻和腐蚀工艺制备的蜂窝结构,在AM1.5条件下测试1cm2电池的效率达到了19.8%。日本Kysera公司采用体钝化和表面钝化技术,PECVD/SiN膜既作减反射膜,又作为体钝化措施,表面织构化采用反应性粒子刻边技术,15cm×15cm大面积多晶硅电池效率达17.7%,目前日本正计划实现这种电池的产业化。
2薄膜硅太阳电池
薄膜硅太阳电池的特征是相对薄(厚度小于100μm)的活性层沉积或附在无活性的支持衬底上,与传统的300μm厚硅片或硅带构成的硅太阳电池相比,薄膜硅太阳电池制作的能耗低成本低,也是很有发展前景的太阳电池之一。多晶硅薄膜太阳电池的制备工艺可分为高温技术路线和低温技术路线。其中高温技术路线以快速热化学气相沉积(RTCVD)、常压化学气相沉积(APCVD)为代表,制备过程中温度高于600℃,衬底材料要求高,但制备工艺简单;弗朗霍夫研究所使用SiO2和SiN包覆陶瓷或SiC包覆石墨为衬底,用RTCVD技术沉积多晶硅薄膜,硅膜经过区熔再结晶后制备电池,两种衬底上制得的电池效率分别达到9.3%和11%。低温技术路线以PECVD为代表,整个加工工艺温度低于600℃,可用廉价玻璃作衬底因此适合大面积制作,但制备工艺较复杂;日本Kaneka公司采用PECVD技术在550℃以下和玻璃衬底上制备出具有PIN结构的多晶硅薄膜电池,效率达到10%。
非晶硅薄膜太阳电池在弱光照射条件下,如早晨、傍晚或者阳光受到一些遮挡,也能有一定的稳定电力输出,而且温度系数小,受温度的影响比晶体硅太阳电池要小得多。典型的非晶硅电池采用PIN和NIP异质结结构,市场上的非晶硅电池大部分是转换效率比较高的多结电池。在最近几十年中,非晶硅太阳电池的技术进步主要表现在材料性能和新制备技术的改进上,例如为了提高非晶硅太阳电池的初始效率和光照条件下的稳定性,新工艺如化学退火法、脉冲氖灯光照法、氢稀释法、交替淀积与氢处理法、掺氟、本征层掺痕量硼法等在材料性能的改进中发挥了很重要作用。非晶硅薄膜电池制备需要沉积的a-Si,早期都采用射频PECVD,但是优质的a-Si合金可用甚高频PECVD技术和微波PECVD技术沉积,在a-Si:H的最佳分解条件下大面积低温沉积的商业生产技术研究受到了关注。目前,瑞士OerlikenSolar研制的非晶硅单结光伏电池稳定转换效率已经突破10%[5],这个最新的纪录可以说是非晶硅光伏技术发展的里程碑。
本文来源:https://www.010zaixian.com/shiyongwen/1542762.htm