高三数学不等式、推理与证明训练试题集
一、选择题:本大题共12小题,每小题5分,共60分.
1.下列符合三段论推理形式的为( )
A.如果pq,p真,则q真
B.如果bc,ab,则ac
C.如果a∥b,b∥c 高考,则a∥c
D.如果a>b,c>0,则ac>bc
解析:由三段论的推理规则可以得到B为三段论.
答案:B
2.类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列性质,你认为比较恰当的是( )
①各棱长相等,同一顶点上的任意两条棱的夹角都相等;
②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各面都是面积相等的三角形,同一顶点上的任意 两条棱的夹角都相等.
A.① B.② C.①②③ D.③
解析:由类比原理和思想,①②③都是合理、恰当的.
答案:C
3.用反证法证明命题“2+3是无理数”时,假设正确的是( )
A.假设2是有理数 B.假设3是有理数
C.假设2或3是有理数 D.假设2+3是有理数
解析:假设结论的反面成立,2+3不是无理数,则2+3是有理数.
答案:D
4.已知ai,bi∈R(i=1,2,3,…,n),a12+a22+…+an2=1,b12+b22+…+bn2=1,则a1b1+a2b2+…+anbn的最大值为( )
A.1 B.2 C.n2 D.2n
解析:此结论为“a,b,c,d∈R,a2+b2=1,c3+d2=1,则ac+bd≤a2+c22+b2+d22=1”的推广,类比可得a1b1+a2b2+…+anbn≤a12+b122+a22+b222+…+an2+bn22=1.
答案:A
5.在下列函数中,最小值是2的是( )
A.y=x2+2x
B.y=x+2x+1(x>0)
C.y=sinx+1sinx,x∈(0,π2)
D.y=7x+7-x
解析:A中x的取值未限制,故无最小值.
D中,∵y=7x+7-x=7x+17x≥2,等号成立的条件是x=0.
B、C选项均找不到等号成立的条件.
答案:D
6.一元二次不等式ax2+bx+1>0的解集为{x-1<x<13},则ab的值为( )
A.-6 B.6 C.-5 D.5
解析:∵ax2+bx+1>0的解集是{x-1<x<13},
∴-1,13是方程ax2+bx+1=0的两根,
∴-1+13=-ba-1×13=1ab=-2,a=-3,∴ab=-3×(-2)=6.
答案:B
7.已知a>0,b>0,则1a+1b+2ab的最小值是( )
A.2 B.22 C.4 D.5
解析:因为1a+1b+2ab≥21ab+2ab=21ab+ab≥4,当且仅当1a=1b,且 1ab=ab,即a=b=1时,取“=”.
答案:C
8.在直角坐标系中,若不等式组y≥0,y≤2x,y≤k(x-1)-1,表示一个三角形区域,则实数k的取值范围是( )
A.(-∞,-1) B.(-1,2)
C.(-∞,-1)∪(2,+∞) D.(2,+∞)
解析:先作出y≥0,y≤2x,的平面区域如图:
若k=0时,显然不能与阴影部分构成三角形.
若k>0,将阴影部分的点如(0,0)代入y≤k(x-1)-1,有0≤-k-1,显然不能与阴影部分构成三角形,所以k<0;又y=k(x-1)-1是过定点(1,-1)的直线,由图知,若与阴影部分构成三角形,则有-k-1>0,
故k<-1时,原不等式组能构成三角形区域.
答案:A
9.如果a>b,给出下列不等式,其中成立的是( )
(1)1a<1b; (2)a3>b3;
(3)a2+1>b2+1; (4)2a>2b.
A.(2)(3) B.(1)(3) C.(3)(4) D.(2)(4)
解析:∵a、b符号不定,故(1)不正确,(3)不正确.
∵y=x3是增函数,∴a>b时,a3>b3,故(2)正确.
∴y=2x是增函数,∴a>b时,2a>2b,故(4)正确.
答案:D
10.设函数f(x)=-3 (x>0),x2+bx+c (x≤0),若f(-4)=f(0),f(-2)=0,则关于x的不等式f(x)≤1的解集为( )
A.(-∞,-3]∪[-1,+∞) B.[-3,-1]
C.[-3,-1]∪(0,+∞) D.[-3,+∞)
解析:当x≤0时,f(x)=x2+bx+c且f(-4)=f(0),故对称轴为x=-b2=-2,∴b=4.
又f(-2)=4-8+c=0,∴c=4,
令x2+4x+4≤1有-3≤x≤-1;
当x>0时,f(x)=-2≤1显然成立.
故不等式的解集为[-3,-1]∪(0,+∞).
答案:C
11.若直线2ax+by-2=0(a>0,b>0)平分圆x2+y2-2x-4y-6=0,则2a+1b的最小值是( )
A.2-2 B.2-1 C.3+22 D.3-22
解析:由x2+y2-2x-4y-6=0得
(x-1)2+(y-2)2=11,
若2ax+by-2=0平 分圆,
∴2a+2b-2=0,∴a+b=1,
∴2a+1b=2(a+b)a+a+bb=3+2ba+ab
≥3+2 2baab=3+22,
当且仅当2ba=ab,且a+b=1,即a=2-2,b=2-1时取等号.
答案:C
12.某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y2与仓库到车站的距离成正比,如果在距离车站10 km处建仓库,这两项费用y1和y2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站( )
A.5 km处 B.4 km处
C.3 km处 D.2 km处
解析:由题意可设y1=k1x,y2=k2x,∴k1=xy1,k2=y2x,
把x=10,y1=2与x=10,y2=8分别代入上式得k1=20,k2=0.8,
∴y1=20x ,y2=0.8x(x为仓库到车站的距离),
费用之和y=y1+y2=0.8x+20x≥2 0.8x20x=8,
当且仅当0.8x=20x,即x=5时等号成立,故选A.
答案:A
第Ⅱ卷 (非选择 共90分)
二、填空题:本大题共4个小题,每小题5分,共20分.
13.如下图,对大于或等于2的自然数m的n次幂进行如下方式的“分裂”:
仿此,52的“分裂”中最大的数是 ,53的“分裂”中最小的数是 .
解析:由已知中“分裂”可得
故“52”的“分裂”中最大的数是9,53的“分裂”中最小的数是21.
答案:9 21
14.由图①有面积关系:S△PA′B′S△PAB=PA′PB′PAPB,则由图②有体积关系:VP-A′B′C′VP-ABC=__________.
解析:设三棱锥C′-PA′B′的高为h′,
15.已知等比数列{an}中,a2>a3=1,则使不等式a1-1a1+a2-1a2+a3-1a3+…+an-1an≥0成立的最大自然数n是__________.
解析:∵a2>a3=1,∴0<q=a1a2<1,a1=1q2>1,
a1-1a1+a1-1a2+a3-1a1+…+an-1an
=(a1+a2+…+an)-1a1+1a2+…+1an
=a1(1-qn)1-q-1a11-1qn1-1q=a1(1-q4)1-q-q(1-qn)a1(1-q)qn≥0,
∴a1(1-qn)1-q≥q(1-qn)a1(1-q)qn.
因为0 <q<1,所以,化简得:a12≥1qn-1,即q4≤qn-1,
∴4≥n-1,n≤5,所以n的最大值为5.
答案:5
16.设实数x,y满足x-y-2≤0,x+2y-5≥0,y-2≤0,则u=yx-xy的取值范围是__________.
解析:作出x,y满足的可行域如图中阴影部分所示,可得可行域内的点与原点连线的斜率的取值范围是13,2,
即yx∈13,2,故令t=yx,
则u=t-1t,根据函数u=t-1t在t∈13,2上单调递增,得u∈-83,32.
答案:-83,32
本文来源:https://www.010zaixian.com/shiti/2720776.htm