菱形的练习题
一 选择题:
1。下列四边形中不一定为菱形的是( )
A。对角线相等的平行四边形 B。每条对角线平分一组对角的四边形
C。对角线互相垂直的平行四边形 D。用两个全等的 等边三角形拼成的四边形
2。下列说法中正确的是( )
A。四边相等的四边形是菱形
B。一组对边相等,另一组对边平行的四边形是菱形
C。对角线互相垂直的四边形是菱形
D。对角线互相平分的四边形是菱形
3。若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )
A。菱形 B。对角线互相垂直的四边形 C。矩形 D。对角线相等的四边形
4。菱形的周长为8cm,高为1cm,则菱形两邻角度数比为( )
A.4:1 B.5:1 C.6:1 D.7:1
5。四个点A,B,C,D在同一平面内,从①AB‖CD;②AB=CD;③ AC⊥BD;④AD=BC;⑤AD‖BC.这5个条件中任选三个,能使四边形ABCD是菱形的选法有( ).
A。1种 B。2种 C。3种 D。4种
6。如图,在菱形ABCD中,AB的垂直平分线EF交对角线AC于点F,垂足为点E,连接DF,若∠CDF=24°,则∠DAB等于( )
A.100° B.104° C.105° D.110°
7。如图,在长方形ABCD中,AB=12,AD=14,E为AB的中点,点F,G分别在CD,AD上,若CF=4,且△EFG为等腰直角三角形,则EF的长为( )
A。10 B。10 C。12 D。12
8。用一条直线将一个菱形分割成两个多边形,若这两个多边形的内角和分别为M和N,则M+N值不可能是( )
A。360° B。540° C。630° D。720°
9。如图,在周长为12的'菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为( )
A。1 B。2 C。3 D。4
10。如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( )
A。4。8 B。5 C。6 D。7。2
11。如图,把长方形纸片ABCD折叠,使其对角顶点C与A重合。若长方形的长BC为8,宽AB为4,则折痕EF的长度为( )
A。5 B。3 C。2 D。3
12。如图,四边形ABCD,AD与BC不平行,AB=CD。AC,BD为四边形ABCD的对角线,E,F,G,H分别是BD,BC,AC,AD的中点。下列结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;
④EG = (BC-AD);⑤四边形EFGH是菱形。其中正确的个数是( )
A。1个 B。2个 C。3个 D。4个
二 填空题:
13。如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数= 度.
14。如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是 .
15。把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是 .
16。如图,在ABCD中,对角线AC、BD相交于点O。如果AC=8,BD=14,AB=x,那么x取值范围是 .
17。在菱形ABCD中,AE为BC边上的高,若AB=5,AE=4,则线段CE的长为 .
18。如图,ABCD中,AB=2,BC=4,∠B=60°,点P是四边形上的一个动点,则当△PBC为直角三角形时,BP的长为 .
三 解答题:
19。如图,已知△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB=5,AC=7,求ED.
20。如图,在平行四边形ABCD中,用直尺和圆规作∠BAD平分线交BC于点E(尺规作图的痕迹保留在图中了),连EF.
(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.
21。如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,过点C作CF‖BE交DE的延长线于F,连接CD.
(1)求证:四边形BCFE是菱形;
(2)在不添加任何辅助线和字母的情况下,请直接写出图中与△BEC面积相等的所有三角形(不包括△BEC).
22。如图,已知在菱形ABCD中,F为边BC的中点,DF与对角线AC交于M,过M作ME⊥CD于E,∠1=∠2.
(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.
23。如图,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,连接BE、AD,P为BD中点,M为AB中点、N为DE中点,连接PM、PN、MN。
(1)试判断△PMN的形状,并证明你的结论;
(2)若CD=5,AC=12,求△PMN的周长。
参考答案
1。A 2。A 3。D 4。B 5。D 6。B 7。B 8。C 9。C. 10。A 11。C 12。C
13。答案为:60.
14。案为:80°.
15。答案为:60.
16。答案为:3<x<11.
17。【解答】解:当点E在CB的延长线上时,如图1所示.
∵AB=5,AE=4,∴BE=3,CE=BC+BE=8;当点E在BC边上时,如图2所示.
∵AB=5,AE=4,∴BE=3,CE=BC-BE=2.综上可知:CE的长是2或8.
故答案为:2或8.
18。【解答】解:分两种情况:
(1)①当∠BPC=90°时,作AM⊥BC于M,如图1所示,
∵∠B=60°,∴∠BAM=30°,∴BM= AB=1,
∴AM= BM= ,CM=BC-BM=4-1=3,
∴AC= =2 ,∴AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,
∴当点P与A重合时,∠BPC=∠BAC=90°,∴BP=BA=2;
②当∠BPC=90°,点P在边AD上,CP=CD=AB=2时,BP= = =2 ;
(2)当∠BCP=90°时,如图3所示:则CP=AM= ,∴BP= = ;
综上所述:当△PBC为直角三角形时,BP的长为 2或2 或 .
19。ED=1,提示:延长BE,交AC于F点.
20。【解答】(1)证明:由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,
∵四边形ABCD是平行四边形,∴AD‖BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,
∴AB=BE,∴BE=FA,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;
(2)解:∵四边形ABEF为菱形,∴AE⊥BF,BO= FB=3,AE=2AO,
在Rt△AOB中,AO=4,∴AE=2AO=8.
21。【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE‖BC,BC=2DE.
∵CF‖BE,∴四边形BCFE是平行四边形.
∵BE=2DE,BC=2DE,∴BE=BC.∴BCFE是菱形;
(2)解:①∵由(1)知,四变形BCFE是菱形,∴BC=FE,BC‖EF,
∴△FEC与△BEC是等底等高的两个三角形,∴S△FEC=S△BEC.
②△AEB与△BEC是等底同高的两个三角形,则S△AEB=S△BEC.
③S△ADC= S△ABC,S△BEC= S△ABC,则它S△ADC=S△BEC.
④S△BDC= S△ABC,S△BEC= S△ABC,则它S△BDC=S△BEC.
综上所述,与△BEC面积相等的三角形有:△FEC、△AEB、△ADC、△BDC.
22。【解答】(1)解:∵四边形ABCD是菱形,∴AB‖CD,∴∠1=∠ACD,
∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,
∵CE=1,∴CD=2,∴BC=CD=2;
(2)证明:如图,∵F为边BC的中点,∴BF=CF= BC,∴CF=CE,
在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,
在△CEM和△CFM中,∵ ,∴△CEM≌△CFM(SAS),
∴ME=MF,延长AB交DF的延长线于点G,∵AB‖CD,∴∠G=∠2,
∵∠1=∠2,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵ ,
∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME.
23。略
【菱形的练习题】相关文章:
2.菱形的判定课件
3.菱形的解释及造句
5.菱形的判定说课稿
本文来源:https://www.010zaixian.com/shiti/2540758.htm