二年级
1.仔细观察,找出变化规律,想一想空格里应填什么图形?
△□○ □○△ ○△□
□○△ ○△□ △□○
○△□ △□○
2.把2、3、4、6、7、9分别填到下面六个圆圈中,使三个算式成立。
○+○=10,○-○=5 ,○+○=8
三年级
1.育才小学五年级举行数学竞赛,共10题,每做对一题得8分,错一题倒扣5分。张小灵最终得分为41分,她做对了多少题?
2.37个同学要坐船过河,渡口处只有一只能载5人的小船(无船工)。他们要全部渡过河去,至少要使用这只小船渡河多少次?
四年级
1.共有四人进行跳远、百米、跳高、铅球四项比赛,规定每个单项第一名记5分,第二名记3分,第三名记2分,第四名记1分,每一单项比赛中四人得分互不相同,总分第一名共获17分,其中跳高得分低于其它项得分,总分第三名共获11分,其中跳高得分高于其它项得分,总分第二名的人铅球得多少分?
2.在一场NBA篮球赛中,姚明开场后不久连连得分,已知他投中10个球(没有罚球),共23分,问姚明投中多少个2分球,多少个3分球?
五年级
1.计算:
(1)(101)2+(1011)2
(2)(1111)2+(1010)2+(1001)2
(3)(1011)2-(111)2
(4)(1011)2×(101)2
2.一个数列有如下规则,当数n 是奇数时,下一个数是(n+1);当n是偶数时,下一个数是n÷2。如果这列数的第一个数是奇数,第四个数是11,则这列数的第一个是多少?
六年级
1.用10米长的钢筋做原料,来截取3米、4米长的的两种钢筋各100根,问至少要用去原料多少根?
2.一条小河流过A、B、C三镇。A、B两镇之间有汽船来往,汽船在静水中的速度为11千米/小时。B、C两镇之间有木船摆渡,木船在静水中的速度为 3.5千米/小时。已知A、C两镇水路相距50千米,水速度为1.5千米/小时。某人从A镇上船顺流而下到B镇,吃午饭用去1小时,接着乘木船有顺流而下到C镇,共用8小时,那么A、B两镇的`距离是多少千米?
二年级
1.仔细观察,找出变化规律,想一想空格里应填什么图形?
解答:是□○△。可以横着、竖着、斜着观察。
2.把2、3、4、6、7、9分别填到下面六个圆圈中,使三个算式成立。
○+○=10,○-○=5,○+○=8
解答::在2、3、4、6、7、9中相加等于8的只有2和6,先把2、6填在第三个算式中,剩下的就可填成3+7=10,9-4=5.
三年级
1.育才小学五年级举行数学竞赛,共10题,每做对一题得8分,错一题倒扣5分。张小灵最终得分为41分,她做对了多少题?
解答:假设全对得10×8=80(分);实际得41分,少得80-41=39分。因为每一题做对做错差13分:所以做错39÷13=3题,因此做对了10-3=7题。
2.37个同学要坐船过河,渡口处只有一只能载5人的小船(无船工)。他们要全部渡过河去,至少要使用这只小船渡河多少次?
解答:如果由37÷5=7……2,得出7+1=8次,那么就错了。因为忽视了至少要有1个人将小船划回来这个特定的要求。实际情况是:前面的每一个来回至多只能渡4个人过河去,只有最后一次小船不用返回才能渡5个人过河。
因为除最后一次可以渡5个人外,前面若干个来回每个来回只能渡过4个人,每个来回是2次渡河,所以至少渡河[(37-5)÷4]×2+1=17(次)。
四年级
1.共有四人进行跳远、百米、跳高、铅球四项比赛,规定每个单项第一名记5分,第二名记3分,第三名记2分,第四名记1分,每一单项比赛中四人得分互不相同,总分第一名共获17分,其中跳高得分低于其它项得分,总分第三名共获11分,其中跳高得分高于其它项得分,总分第二名的人铅球得多少分?
解答:
如表:17=5+5+5+2,而且只有这种拆分方法,又因为第一名跳高得分低于其它项得分,所以第一名跳高得2分,其它3项得5分。
因为11=5+2+2+2=3+3+3+2并且第三名跳高得分高于其它项得分,所以第三名跳高得5分,其它三项得2分。
第二名和第四名共可得4??3+1??4=16分,第三名总分11分,第二名至少12分,每项各得3分。第四名至少得4分,每项各得1分。
所以第二名铅球得3分。
2.在一场NBA篮球赛中,姚明开场后不久连连得分,已知他投中10个球(没有罚球),共23分,问姚明投中多少个2分球,多少个3分球?
解答:假设投中的10个球全是2分球,得:2??10=20(分),比实际少:23-20=3(分)。
用1个3分球去换1个2分球差出:3-2=1(分),可以换3÷1=3(个)3分球,2分球有:10-3=7(个)。
五年级
1.计算:
(1)(101)2+(1011)2
(2)(1111)2+(1010)2+(1001)2
(3)(1011)2-(111)2
(4)(1011)2×(101)2
解答:
(1)(101)2+(1011)2=(10000)2
(2)(1111)2+(1010)2+(1001)2=(100010)2
(3)(1011)2-(111)2=(100)2
(4)(1011)2×(101)2=(110111)2
2.一个数列有如下规则,当数n是奇数时,下一个数是(n+1);当n是偶数时,下一个数是n÷2。如果这列数的第一个数是奇数,第四个数是11,则这列数的第一个是多少?
解答:根据倒退规则最初那个数是奇数的只有43。
六年级
1.用10米长的钢筋做原料,来截取3米、4米长的的两种钢筋各100根,问至少要用去原料多少根?
解答:10米的钢筋有三种解法较省料:
(1)截成3米、3米、4米三段,无残料;
(2)截成3米、3米、3米三段,残料1米;
(3)截成4米、4米两段,残料2米;
由于截法(1)最理想,应该充分利用截法(1)。考虑用原料50根,可以截成3米长的100根,4米长的50根,还差50根4米长的钢筋。应用截法(3),截原料25根,可以得到50根4米长的钢筋。所以,至少需要原料75根,其中50根按截法(1)截取,25根按截法(3)截取。
2.一条小河流过A、B、C三镇。A、B两镇之间有汽船来往,汽船在静水中的速度为11千米/小时。B、C两镇之间有木船摆渡,木船在静水中的速度为3.5千米/小时。已知A、C两镇水路相距50千米,水速度为1.5千米/小时。某人从A镇上船顺流而下到B镇,吃午饭用去1小时,接着乘木船有顺流而下到C镇,共用8小时,那么A、B两镇的距离是多少千米?
解答:汽船的顺水速度是11+1.5=12.5(千米/小时)。木船顺水速度是3.5+1.5=5(千米/小时)。某人在船上的行驶时间为8-1=7(小时)。假设他从A到C均乘汽船,所走路程为12.5×7=87.5(千米)。此假设较实际A到C的距离多87.5-50=37.5(千米)。汽船与木船的速度差为12.5-5=7.5(千米/小时)。乘木船的时间为37.5÷7.5=5(小时),乘木船走的路程,即B到C的距离为5×5=25(千米)。所以A到B的距离是50-25=25(千米)。
【有关小升初奥数试题】相关文章:
本文来源:https://www.010zaixian.com/shiti/2255474.htm