欢迎来到010在线作文网!

应用举例的测试题

试题 时间:2021-08-31 手机版

  一、选择题

  1.飞机沿水平方向飞行,在处测得正前下方地面目标的俯角为,向前飞行米,到达处,此时测得目标的俯角为,这时飞机与地面目标的直线距离为( ).

  A.米 B.米 C.米 D.米

  考查目的:考查正弦定理的应用.

  答案:B.

  解析:如图,在中,根据正弦定理得,解得(米).

  2.某人向正东方向走,然后右转,朝前走,结果他离出发点恰好,则的值为( ).

  A. B. C.或 D.

  考查目的:考查余弦定理、方程思想.

  答案:C.

  解析:根据余弦定理得,化简并整理得,解得或.

  3. (由2010浙江文改编)在中,角所对的边分别为,设为的面积,满足,则角的大小为( ).

  A. B. C.或 D.或

  考查目的:考查余弦定理、三角形面积公式、三角变换等基础知识.

  答案:B

  解析:∵,∴根据余弦定理和三角形面积公式得,∴,.

  二、填空题

  4.(2008江苏卷)在中,若,,则的最大值是 .

  考查目的:考查三角形面积公式、余弦定理以及函数思想.

  答案:.

  解析:设,则,根据面积公式得;根据余弦定理得,∴,

  由三角形三边关系有,解得,故当时,取得最大值.

  5.(2011安徽理)已知的一个内角为,并且三边长构成公差为4的等差数列,则的面积为_______________.

  考查目的:考查余弦定理、等差数列的概念及三角形面积公式.

  答案:.

  解析:根据题意,可设的三边长分别为,由得.由余弦定理得,解得(舍去),∴

  6.如图,某炮兵阵地位于点,两观察所位于两点,已知为正三角形,且,当目标出现在时,测得,则炮兵阵地与目标的距离约为 (精确到).

  考查目的:考查利用正弦定理、余弦定理解决实际问题的能力.

  答案:.

  解析:如图,,在中,由正弦定理得,∴.在中,,由余弦定理得

  三、解答题:

  7.(2007海南、宁夏)如图,测量河对岸的'塔高时,可以选与塔底在同一水平面内的两个侧点与.现测得,,并在点测得塔顶的仰角为,求塔高.

  考查目的:考查正弦定理、直角三角形的边角关系以及空间想象能力和运算求解能力.

  答案:.

  解析:在中,.由正弦定理得,∴.在中,.

  8.(2010福建理)某港口要将一件重要物品用小艇送到一艘正在航行的轮船上. 在小艇出发时,轮船位于港口北偏西且与该港口相距海里的处,并以海里/小时的航行速度沿正东方向匀速行驶. 假设该小船沿直线方向以海里/小时的航行速度匀速行驶,经过小时与轮船相遇.

  ⑴若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?

  ⑵假设小艇的最高航行速度只能达到海里/小时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.

  考查目的:考查利用直角三角形的边角关系、余弦定理解三角形,以及综合运用知识分析问题解决问题的能力.

  答案:⑴海里/小时,⑵航行方向是北偏东,航行速度为海里/小时.

  解析:(方法一)⑴设相遇时小艇航行的距离为海里,则 ,∴当时,,此时,即小艇以海里/小时的速度航行,相遇时小艇的航行距离最小.

  ⑵设小艇与轮船在处相遇,则,∴. ∵,∴,即,解得.又∵时,,故时,取得最小值,且最小值等于.

  此时,在中,有,故可设计航行方案如下:航行方向是北偏东,航行速度为海里/小时,这样,小艇能以最短时间与轮船相遇.

  (方法二)⑴若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向,设小艇与轮船在处相遇. 在中,,;又,,此时,轮船航行时间,即小艇以海里/小时的速度航行,相遇时小艇的航行距离最小.

  ⑵猜想时,小艇能以最短时间与轮船在处相遇,此时.又∵,∴,解得.

  据此可设计航行方案如下:航行方向为北偏东,航行速度的大小为海里/小时,这样,小艇能以最短时间与轮船相遇. 证明如下:

  如图,由⑴得,故,且对于线段上任意点,有. 而小艇的最高航行速度只能达到海里/小时,故小艇与轮船不可能在,之间(包含)的任意位置相遇.

  设,则在中,.由于从出发到相遇,轮船与小艇所需要的时间分别为和,∴,由此可得,.又∵,∴,从而,由于时,取得最小值,于是当时,取得最小值,且最小值为,故可设计航行方案如下:航行方向为北偏东,航行速度为海里/小时,小艇能以最短时间与轮船相遇.

  (方法三)⑴同方法一或方法二.

  ⑵设小艇与轮船在处相遇,依题意得,∴.

  (i)若,则由得,,∴.①当时,令,则,,当且仅当即时等号成立.

  ②当时,同理可得. 由①②得,当时,.

  (ii)若,则.

  综合(i)(ii)可知,当时,取最小值,此时,在中,,故可设计航行方案如下:航行方向为北偏东,航行速度为海里/小时,小艇能以最短时间与轮船相遇.

【关于应用举例的测试题】相关文章:

1.《1.2 应用举例》测试题及答案参考

2.关于举例子的句子

3.勾股定理应用举例的教学反思

4.勾股定理的应用举例练习题

5.关于数学函数应用测试题

6.关于晚安心语的句子举例

7.关于带有数字的成语举例

8.《电解原理的应用》测试题


本文来源https://www.010zaixian.com/shiti/2240070.htm
以上内容来自互联网,请自行判断内容的正确性。若本站收录的信息无意侵犯了贵司版权,请给我们来信(zaixianzuowenhezi@gmail.com),我们会及时处理和回复,谢谢.