第1课时
1.使学生了解因式分解的意义,了解因式分解和整式乘法是整式的两种相反方向的变形.
2.让学生会确定多项式中各项的公因式,会用提公因式法进行因式分解.
自主探索,合作交流.
1.通过与因数分解的类比,让学生感悟数学中数与式的共同点,体验数学的类比思想.
2.通过对因式分解的教学,培养学生“换元”的意识.
【重点】 因式分解的概念及提公因式法的应用.
【难点】 正确找出多项式中各项的公因式.
【教师准备】 多媒体.
【学生准备】 复习有关乘法分配律的知识.
导入一:
【问题】 一块场地由三个长方形组成,这些长方形的长分别为,,,宽都是,求这块场地的面积.
解法1:这块场地的面积=×+×+×=++==2.
解法2:这块场地的面积=×+×+×=×=×4=2.
从上面的解答过程看,解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是将多项式化为几个整式的积的形式的一种方法.
[设计意图] 让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础.
导入二:
【问题】 计算×15-×9+×2采用什么方法?依据是什么?
解法1:原式=-+==5.
解法2:原式=×(15-9+2)=×8=5.
解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是把多项式化为几个整式的积的形式的一种方法.
[设计意图] 让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础.
本文来源:https://www.010zaixian.com/jiaoan/591312.htm