导语:
活动目的:
1、幼儿知道应用题的结构,初步学会看图列式,能根据不同的画面,学会口编8以内的加减法应用题。具有一定的推理能力。
2、懂得运用互换规律列出另一道算式,并列式运算。
活动准备:
课件,幼儿每人一套数字卡片及加号、减号、等号,练习纸,铅笔。
活动过程:
一、复习8的分合。
1、 “老师带来了一蓝鲜花,要分给小朋友。” 教师点击课件。
“数数看,有几朵鲜花?”“一共有8朵鲜花,分给小朋友一朵,另外一位小朋友是几朵鲜花?”用拍手、跺脚或体态动作来表示?说对的电脑给予鼓掌。
2、“老师又摘了几朵鲜花,数数看。”“分给小朋友二朵,另外一位小朋友是几朵鲜花?”
3、“老师又摘了几朵鲜花,数数看。”“分给小朋友三朵,另外一位小朋友是几朵鲜花?”
二、学习8的加减
1、 出示课件,看图列式,学习列加法算式,先让幼儿观察,知道两种不同颜色的气球可以列加法题。7+1=8,根据互换规律,找出另一道题1+7=8。
2、 师:应用题讲了一件事,(妈妈买气球)2个已知道的数(7和1),还提出一个问题?(一共有几个气球)这道应用题用什么方法运算?为什么说7+1=8?(7和1合起来是8)。
幼儿根据不同形状的树,列出加法算式。6+2=8,根据互换规律,找出另一道题2+6=8。师:刚才编的应用题讲了一件事?有哪两个已知道的数?还提出一个什么问题?(教师小结:编应用题有三个要求:要说出一件事情,有2个已知道的数;还提出一个问题)这道应用题用什么方法运算?为什么?怎样列式?为什么说2+6=8?对了,一共有8棵树。
3. 幼儿看图编减法应用题(点击课件)。
师:看谁能根据三个要求来编应用题,编得又快又完整(并用“三个要求”检查应用题对、错)。
出示课件,看图列式,学习列减法算式,让幼儿知道划去的符号表示减少的意思,可以列减法算式。8-1=7,另一道题是8-7=1。
看图汽车,列出算式8-2=6,另一道题是8-6=2。
三、幼儿动手操作活动
将老师给出的三个数字2、6、8和3、5、8,用卡片排出两道加法和两道减法算式,并将结果记录在练习纸上。引导幼儿根据生活经验编题。
四、游戏《找朋友》
幼儿根据自已卡片上的数字找合起来是8的朋友。
[page_break]
活动结束:
小朋友一起听音乐。
延伸阅读
发展历史
Mathematics (pinyin: shu xue; Greek: mu alpha theta eta mu alpha tau; (English: Mathematics), derived from the ancient Greek mu theta eta mu alpha (math), which has the meaning of learning, learning and science. The ancient Greek scholars regarded it as the starting point of philosophy, "the foundation of learning". There is also a narrower and more technical significance, "mathematical research". Even in its etymology, its adjective meaning has to do with learning and is used for exponential learning.
It is in the plural form of English, and in the plural form of French, plus es into mathematiques, which can be traced to the Latin neutral plural (Mathematica), which is translated from the Greek plural tao alpha mu alpha mu alpha theta eta mu alpha theta eta mu alpha tau theta mu alpha theta.
In ancient China, mathematics was called arithmetic, also called mathematics, and finally mathematics. The arithmetic of ancient China is one of six arts (six art is called "number").
Mathematics originated from the early production activities of human beings. Ancient babylonians have accumulated certain mathematical knowledge since ancient times and can apply practical problems. From the math itself, their knowledge of mathematics is only observation and experience, without comprehensive conclusions and proofs, but also full affirmation of their contribution to mathematics.
The knowledge and application of basic mathematics is an indispensable part in the life of a person and a group. Its basic concept of refining is long before ancient Egypt, Mesopotamia and ancient Indian ancient mathematical texts. Since then, its development has continued to have small progress. But algebra and geometry had long remained independent.
Algebra is arguably the most widely accepted "mathematics". It's fair to say that every single person starts learning the math when they are young, and the first mathematics that comes into contact with is algebra. Mathematics, as a study of "number", is also one of the most important parts of mathematics. Geometry was the first branch of mathematics to be studied.
It wasn't until the Renaissance of the 16th century that Descartes founded analytic geometry that brought together the algebra and geometry that were completely separated at the time. Since then, we can finally prove the theorems of geometry by computing. It can also represent abstract algebraic equations with graphic representation. And then it developed even more subtle calculus.
Mathematics now includes many branches. The French bourbaki school, founded in the 1930s, argued that mathematics, at least pure mathematics, was the theory of abstract structures. Structure is a deductive system based on initial concepts and axioms. They believe that mathematics has three basic maternal structures: algebraic structures (groups, loops, domains, and so on). ), sequence structure. ), topological structure (neighborhood, limit, connectivity, dimension... ).
Mathematics is applied in many different fields, including science, engineering, medicine and economics. The applications of mathematics in these fields are generally called applied mathematics, and sometimes they provoke new mathematical discoveries and lead to the development of new mathematical disciplines. Mathematicians also study pure mathematics, which is mathematics itself, without any practical application. Although there is a lot of work to start with pure mathematics, it may be possible to find suitable applications later.
Concrete, there are used to explore the links between math core to other areas of sub areas: by logic, set theory, mathematical basis, to different scientific experience in mathematics, applied mathematics, at a relatively modern research to uncertainty (chaos, fuzzy mathematics).
In terms of longitudinally, the exploration in the fields of mathematics is also deepened.
数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的。
其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικ(ta mathēmatiká)。
在中国古代,数学叫作算术,又称算学,最后才改为数学。中国古代的算术是六艺之一(六艺中称为“数”)。
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展。但当时的代数学和几何学长久以来仍处于独立的状态。
代数学可以说是最为人们广泛接受的“数学”。可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。而数学作为一个研究“数”的.学科,代数学也是数学最重要的组成部分之一。几何学则是最早开始被人们研究的数学分支。
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起。从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程。而其后更发展出更加精微的微积分。
现时数学已包括多个分支。创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……)。
数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。
具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学)。
就纵度而言,在数学各自领域上的探索亦越发深入。
【幼儿园数学课件整理】相关文章:
2.幼儿园数学课件
4.幼儿园的数学课件
5.趣味数学课件
6.大学数学课件
7.中专数学课件
本文来源:https://www.010zaixian.com/jiaoan/2536545.htm