学习目标:
(1)理解函数的概念
(2)会用集合与对应语言来刻画函数,
(3)了解构成函数的要素。
重点:
函数概念的理解
难点:
函数符号y=f(x)的理解
知识梳理:
自学课本P29—P31,填充以下空格。
1、设集合A是一个非空的实数集,对于A内 ,按照确定的对应法则f,都有 与它对应,则这种对应关系叫做集合A上的一个函数,记作 。
2、对函数 ,其中x叫做 ,x的取值范围(数集A)叫做这个函数的 ,所有函数值的集合 叫做这个函数的 ,函数y=f(x) 也经常写为 。
3、因为函数的值域被 完全确定,所以确定一个函数只需要
。
4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验:
① ;② 。
5、设a, b是两个实数,且a
(1)满足不等式 的实数x的集合叫做闭区间,记作 。
(2)满足不等式a
(3)满足不等式 或 的实数x的集合叫做半开半闭区间,分别表示为 ;
分别满足x≥a,x>a,x≤a,x
其中实数a, b表示区间的两端点。
完成课本P33,练习A 1、2;练习B 1、2、3。
例题解析
题型一:函数的概念
例1:下图中可表示函数y=f(x)的图像的只可能是( )
练习:设M={x| },N={y| },给出下列四个图像,其中能表示从集合M到集合N的函数关系的有____个。
题型二:相同函数的判断问题
例2:已知下列四组函数:① 与y=1 ② 与y=x ③ 与
④ 与 其中表示同一函数的是( )
A. ② ③ B. ② ④ C. ① ④ D. ④
练习:已知下列四组函数,表示同一函数的是( )
A. 和 B. 和
C. 和 D. 和
题型三:函数的.定义域和值域问题
例3:求函数f(x)= 的定义域
练习:课本P33练习A组 4.
例4:求函数 , ,在0,1,2处的函数值和值域。
当堂检测
1、下列各组函数中,表示同一个函数的是( A )
A、 B、
C、 D、
2、已知函数 满足f(1)=f(2)=0,则f(-1)的值是( C )
A、5 B、-5 C、6 D、-6
3、给出下列四个命题:
① 函数就是两个数集之间的对应关系;
② 若函数的定义域只含有一个元素,则值域也只含有一个元素;
③ 因为 的函数值不随 的变化而变化,所以 不是函数;
④ 定义域和对应关系确定后,函数的值域也就确定了.
其中正确的有( B )
A. 1 个 B. 2 个 C. 3个 D. 4 个
4、下列函数完全相同的是 ( D )
A. , B. ,
C. , D. ,
5、在下列四个图形中,不能表示函数的图象的是 ( B )
6、设 ,则 等于 ( D )
A. B. C. 1 D.0
7、已知函数 ,求 的值.( )
【高一数学教案:变量与函数的概念】相关文章:
本文来源:https://www.010zaixian.com/jiaoan/2250554.htm