学习目标:
1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义。
2、会解由两个一元一次不等式组成的一元一次不等式组,能借助数轴正确的表示一元一次不等式组的解集。
3、通过探讨一元一次不等式组的解法以及解集的确定,渗透转化思想,进一步感受数形结合在解决问题中的作用。
4、体验不等式在实际问题中的作用,感受数学的应用价值。
学习重点:
一元一次不等式组的解法
学习难点:
一元一次不等式组解集的确定。
一、学前准备
【回顾】
1.解不等式 ,并把解集在数轴上表示出来。
【预习】
1、 认真阅读教材34-35页内容
2、____________ _ 叫做一元一次不等式组。
______ _______叫做一元一次不等式组的解集。
叫做解不等式组。
4、求下列两个不等式的`解集,并在同一条数轴上表示出来
①
二、探究活动
【例题分析】
例1. (问题1)题中的买5筒钱不够,买4筒钱又多的含义是什么?
例2. (问题2)题中的相等关系是什么?不等关系又是什么?
例3. 解不等式组
【小结】
不等式组解集口诀
同大取大,同小取小,大小小大中间找,大大小小解不了
一元一次不等式组解集四种类型如下表:
不等式组(a
(1)xb
xb 同大取大
(2)x
x
(3)xax
a
(4)xb
无解 大大小小解不了
【课堂检测】
1、不等式组 的解集是( )
A. B. C. D.无解
2、不等式组 的解集为( )
A.-1
3、不等式组 的解集在数轴上表示正确的是( )
A B C D
4、写出下列不等式组的解集:(教材P35练习1)
三、自我测试
1.填空
(1)不等式组x-1 的解集是_ __;
(2)不等式组x-2 的解集 ;
(3)不等式组x1 的解集是__ __;
(4)不等式组x-4 解集是___ ___。
2、解下列不等式组,并在数轴上表示出来
(1)
四、应用与拓展
若不等式组 无解,则m的取值范围是 ____ _____.
【《一元一次不等式组》教案设计】相关文章:
本文来源:https://www.010zaixian.com/jiaoan/2036775.htm