高一数学《集合》说课稿示例
篇一:《集合》说课稿
一、说教材
(1)说教材的内容和地位
本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。从知识结构上来说是为了引入函数的定义。因此在高中数学的模块中,集合就显得格外的举足轻重了。
(2)说教学目标
根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标制定如下教学目标:
1.知识与技能:掌握集合的基本概念及表示方法。了解“属于”关系的意义,掌握集合元素的特征。
2.过程与方法:通过情景设置提出问题,揭示课题,培养学生主动探究新知的习惯,并通过“自主、合作与探究”实现“一切以学生为中心”的理念。
3.情感态度与价值观:感受数学的人文价值,提高学生的学习数学的兴趣,由集合的学习感受数学的简洁美与和谐统一美。同时通过自主探究领略获取新知识的喜悦。
(3)说教学重点和难点
依据课程标准和学生实际,我确定本课的教学重点为教学重点:集合的基本概念及元素特征。
教学难点:掌握集合元素的三个特征,体会元素与集合的属于关系。
二、说教法和学法
接下来则是说教法、学法。
教法与学法是互相联系和统一的,不能孤立去研究。什么样的教法必带来相应的学法,以遵循启发性原则为出发点,就本节课而言,我采用“生活实例与数学实例”相结合,“师生互动与课堂布白”相辅助的方法。通过不同层次的练习体验,凭借有趣、实用的教学手段,突出重点,突破难点。然而,学生是学习的主人,以学生为主体,创造条件让学生参与探究活动,不仅提高了学生探究能力,更让学生获得学习的技能和激发学生的学习兴趣。因此,本次活动采用的学法有自主探究、观察发现、合作交流、归纳总结等。
总之,不管采取什么教法和学法,每节课都应不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终以学生为主体,为学生创造和谐的课堂氛围。
三、说教学过程
接着我来说一下最重要的部分,本节课的教学过程:
这节课的流程主要分为六个环节:创设情境(引入目标)、自主探究(感知目标)、讨论辨析(理解目标)、变式训练(巩固目标)、课堂小结(自我评价)、作业布置(反馈矫正)。
上述六个环节由浅入深,层层递进. 多层次、多角度地加深对概念的理解. 提高学生学习的兴趣,以达到良好的教学效果。
第一环节:创设问题情境,引入目标
课堂开始我将提出两个问题:
问题1:班级有20名男生,16名女生,问班级一共多少人?
问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?
这里我会让学生以小组讨论的形式进行讨论问题,事实上小组合作的形式是本节课主要形式。
待学生讨论完毕以后我将作归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(同时我将板书标题:集合)。
安排这一过程的意图是为了从实际问题引入,让学生了解数学来源于实际。从而激发学生参与课堂学习的欲望。
很自然地进入到第二环节:自主探究让学生阅读教材,并思考下列问题:
(1)有那些概念?
(2)有那些符号?
(3)集合中元素的特性是什么?
安排这一过程的意图是给学生提供活动空间,让主体主动建构自己的知识结构。培养学生的探究能力。
让学生自主探究之后将进入第三环节:讨论辨析
小组合作探究(1)
让学生观察下列实例
(1)1~20以内的所有质数;
(2)所有的正方形;
(3)到直线 的距离等于定长 的所有的点;
(4)方程 的所有实数根;
通过以上实例,辨析概念:
(1)集合含义:一般地,某些指定的对象集在一起就成为一个集合,也简称集。而
集合中的每个对象叫做这个集合的元素。
(2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C?表示,而元素用小
写的拉丁字母a,b,c?表示。
小组合作探究(2)——集合元素的特征
问题3:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?
问题4:某单位所有的“帅哥”能否构成一个集合?由此说明什么?
集合中的元素必须是确定的
问题5:在一个给定的集合中能否有相同的元素?由此说明什么?
集合中的元素是不重复出现的
问题6:咱班的全体同学组成一个集合,调整座位后这个集合有没有变化?由此说明什么?
集合中的元素是没有顺序的
我如此设计的意图是因为:问题是数学的心脏,感受问题是学习数学的根本动力。
小组合作探究(3)——元素与集合的关系
问题7:设集合A表示“1~20以内的所有质数”,那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?
问题8:如果元素a是集合A中的元素,我们如何用数学化的语言表达?
a属于集合A,记作a∈A
问题9:如果元素a不是集合A中的元素,我们如何用数学化的语言表达?
a不属于集合A,记作a?A
小组合作探究(4)——常用数集及其表示方法
问题10:自然数集,正整数集,整数集,有理数集,实数集等一些常用数集,分别用什么符号表示?
自然数集(非负整数集):记作 N
正整数集:记作 N或 N? 整数集:记作 Z
有理数集:记作 Q 实数集:记作 R
设计意图:由于不同的人对同一问题有不同的体验和理解。让学生通过合作交流相互得到启发,从而不断完善自己的知识结构。
第四环节:理论迁移 变式训练
1.下列指定的对象,能构成一个集合的是
① 很小的数
② 不超过30的非负实数
③ 直角坐标平面内横坐标与纵坐标相等的点
④ π的近似值
⑤ 所有无理数
A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④
第五环节:课堂小结,自我评价
1.这节课学习的主要内容是什么?
2.这节课主要解释了什么数学思想?
设计意图:引导学生对所学知识、思想方法进行小结,形成知识系统.教师用激励性的语言加一点评,让学生的思想敞亮的发挥出来。
第六环节:作业布置,反馈矫正
1.必做题 课本习题1.1—1、2、3。
2.选做题 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求实数a 的值。 设计意图:充分考虑到学生的差异性,让所有学生都有成功的情感体验。
四、板书设计
好的板书就像一份微型教案,为了让学生直观易懂的看笔记,板书应设计得有条理性、概括性、指导性,所以我设计的板书如下:
集 合
1.集合的概念 4.范例研究
2.集合元素的特征
(学生板演)
3.常见集合的表示?
以上,我是从教材、教法和学法、教学过程和板书设计四个方面对本课进行了说明,我的说课到此结束,谢谢各位评委老师,并请各位评委老师指正!
本文来源:http://www.010zaixian.com/yuwen/shuokegao/2590330.htm