尊敬的各位评委老师:大家,下午好!
我今天说课的题目是《数与形例1》,以下我将从说教材,说教学目标,说重难点,说教学方法、说教学流程以及板书设计这几个方面展开我的说课。
一、教材
我所说的内容属于人教版六年级上册数学广角“数与形”,是教材新增添的内容。数形结合是一种非常重要的数学思想,把数与形结合起来解决问题可使复杂的问题变得更简单,使抽象的问题变得更直观。数与形相结合的例子在小学教材中比比皆是。有的时候,是图形中隐含着数的规律,可利用数的规律来解决图形的问题。有时候,是利用图形来直观地解释一些比较抽象的数学原理与事实,让人一目了然。尤其是小学生思维的抽象程度还不够高.经常需要借助直观模型来帮助理解。本单元包括两个例题和两题做一做及练习二十二的8道练习题,主要是通过特殊的算式与图形的关系把抽象的数学运算形象化,旨在进一步让学生学会“数形结合”的解题方法,同时向学生渗透“极限”的数学思想。根据教材内容,结合学生实际情况,本节课的教学内容定为例1。
二、教学目标
根据六年级学生的实际情况,结合我对教材的理解,我设计了如下教学目标:
1.让学生在观察比较中找出从1开始的连续奇数之和与平方数(即正方形数)之间的关系,发现规律,会利用规律来解决问题。
2.形与数对照,让学生通过探索形的变化规律来理解数的变化规律,能解决实际问题。
3.使解决数学问题的过程中,体会数形结合的数学思想。
三、教学重点及难点 :
根据新课程标准和对教材理解的基础上,我确定了以下教学重点及难点:
教学重点:借助数与形之间的关系解决实际问题。
教学难点:如何用形来表示数。
四、教学方法
学习是学生自己的事,只有学生以极大的热情投身到整个学习过程中,主动学习,才能学得有效果,在学生自主学习的过程中教师应给予适当的引导。本节课采用教师引导和学生自主学习相结合的方法,培养学生积极探索和团结协作的科学精神。适当地运用多媒体来辅助教学,不仅可以激发学生的学习兴趣,使抽象的教学内容更加直观、具体、形象化,还可以让学生乐于学、善于学、自主学。教学中采用电子白板生动形象的演示功能,强化理解,突破重点、难点。
五、教学流程
为了体现学生是学习主体,以学生的学为立足点我设计了以下的教学环节:
(一)基本训练 激趣导入
借助复习中按规律填空和计算第一小题的引路帮助学生建立新知的生长点。计算的第二题主要是激发学生的求知欲望,让学生在迫切要求学习的心理状态下开始新的一课。
(二)认准目标 尝试学习
1.认准目标即把一堂课的学习目标准确地把握住,这既是对学生说的,也是对教师说的。教师和学生只有目标明确,方向才不会跑偏,才会集中精力攻主要问题,才会高效,本节课的目标的认定方式是逐一认定。
2.尝试学习环节关键的是教师要根据学情出示相应的学习指导。让学生的尝试学习更加有目的。
(1)数形结合找的规律。尝试学习例1,通过观察图和右边的算式补充完整。想一想式子的特点。1=()2,1+3+5=( )21+3+5+7=()2。
(2)形与数对照理解数的变化规律。观察课本108页每个图形中红色小正方形和蓝色小正方形的个数,找找其中的规律。
(三)答疑解惑 精讲深化。
教师针对学生尝试学习中遇到的难点或不懂的问题,进行精讲。做到以学定教,把内容、难点、解决问题和习文的方法讲得正确明白。学生重在倾听教师的讲解,做到思维参与、理解难点、弄懂学习的内容,把问题和解决问题的方法搞清楚,把作答的要领、习文的方法弄明白。
1.数形结合找的规律。
(1)通过观察、师生一起摆一摆等活动理解图形与式子之间的关系。
1=( )2,1+3+5=( )2, 1+3+5+7= ( )2 。
(2)借助课件演示1+3+5+7+9=( )2 1+3+5+7+9+11=( )2
图和式子,引导学生借助图形发现规律。
(3)总结规律:从1开始的几个连续奇数相加,和就是几的平方。
2.形与数对照理解数的变化规律。
(1)借助课件演示课本108页每个图形中红色小正方形和蓝色小正方形的个数的关系。重点凸显每个图形不变的是红色左右两边各3个蓝色的小正方形,共六个,变的是每增加一个红色的小正方形,就增加2个小正方形,突破教学难点。
(2)利用找到的规律说一说:第6个图形有多少个红色的小正方形和多少个蓝色的小正方形?第10个图形呢?第50个图形呢?
(四)变式训练 评价反馈
1.教师要通过变式题的训练使学生从本质上了解所学知识,教师可以从这次训练中发现前面没有解决的问题作进一步的明确,并对学生的学习情况做出评价。评价重在鼓励好的学习态度、方法,指出努力的方向。共设计三道小题,了解学生的学习情况。
2.评价反馈
对学生的学习情况做出评价,鼓励好的学习态度、方法,指出努力的方向。强调数学是研究数与形的一门学科。形的问题中包含数的规律,数的问题也可以用形来帮助解决,数和形是密不可分的,在学习过程中看到数要想到形,看到形要想到数。
(五)分层测试 巩固拓展
独立作业是一堂课必不可少的环节,当堂检测是从面向全体学生的角度出发,设计不同层次的独立作业题,题型可多样,但要有基础题、综合题和拓展题。本节课的当堂检测共有5个题,有3题基础题(第一题填空,第二题判断,第三题计算)有1题综合题(第四题请根据图形与数的规律接着画一画,填一填)有1题拓展题(运用例1学到的思考方法,能直接算出下面式子的结果吗?2+4+6+8+10+12+14+16+18+20=( )规律:从2开始的n个连续偶数的和等于( )。
本文来源:http://www.010zaixian.com/yuwen/shuokegao/1270260.htm