完全平方公式教学课件2
一、教学目标:
探索完全平方公式的过程,进一步发展推理能力;在变式中,拓展提高;通过积极参与数学学习活动,培养学生自主探究能力,勇于创新的精神和合作学习的习惯;
二、教学重点与难点:
重点是正确理解完全平方公式(a±b)2=a2±2ab+b2,并初步运用;难点是完全平方公式的运用。
三、教学过程:
1.导入新课:
师:前面学习了平方差公式,同学们对平方差公式的结构特点、运用以及学习公式的意义有了初步的认识。今天,我们继续学习、研究另一种“乘法公式”——完全平方公式。
观察图形(投影显示图形)一个边长为a的正方形,现在把它的边长增加了b,形成图中的四个图形,你能用不同的方法表示图形的面积?
(活动:教师巡视,检查学生的解题情况)
两名学生到黑板写出面积(a+b)2 a2+2ab+b2
师:提出:比较这两种相等吗?请用多项式乘法法则计算(a+b)2:结果是多少?
得出结论:(a+b)2展开后结果是a2+2ab+b2,从而引出课题:完全平方公式。
2.自学检测,制造通用工具:
师:下面进行自学检测.
计算:⑴(x+3)2;⑵(2x-5)2;⑶(mn+t)2;⑷(-4x+y2)2。 (活动:投影显示练习题。)
生:(四人到黑板上板演,答错了,由学生纠正,老师再点评。) 师:观察练习,公式中的a、b可代表什么?
生:可以表示一个数,也可以表示一个单项式、多项式。
说明:点评时,老师反复引导学生分清题目中哪部分相当于公式中的a,哪部分相当于公式中的b,就是让学生明确“公式中的a、b可表示数,也可表示一个单项式、多项式或其他的式子”的变化规律,即制造通用工具。在前面学习平方差公式时,学生应该认识到这个道理,在这里再次强化。
师:说得非常好,明确“公式中的a、b可以表示一个数,也可以表示一个单项式、多项式”的变化规律,就能正确运用公式解题了。显然,刚做的练习题是由公式变化来的,若是变下去,能变多少道题? 生:无数道。
师:最终是几道题?
生:一道。
说明:这就是老师的“暗线”语言,引导学生明白从公式出发,反映在a、b上只是取值不同,可以演变出无数道题,是“解压”的
过程,最终还是利用公式解题,所有的题目只有“一道”,只是形式不同,这又是“压缩”的过程,把握了变化规律才能更好地解题。 师:你会变了吗?请各小组编题。
(活动:四人小组先在组内讨论、交流,再推选完成最快的两个小组出示题目,其他小组同学练习。)
说明:引导学生现场出题,一是激发学生兴趣、活跃气氛,二是验证变化规律。
师:下面思考,如何计算:(a+b+c)2
生1:可根据多项式乘以多项式来计算,就是把(a+b+c)2看做(a+b+c)(a+b+c)。
师:不错。还有其他方法吗?
生2:也可以把其中的(a+b)两项看成一项,变成[(a+b)+c]2的形式,就能直接运用完全平方公式了。
师:说得非常好。两种方法都可以,但哪种更简单呢?请你任选一种,完成练习。
生:(紧张地做题,同时找两个学生到黑板上板演。) 师:这道题若是变为(a+b+c+d)2,你会做吗?
生:(齐答)会。
师:怎么办?
生1:把其中(a+b)看做一项,(c+d)看做一项,还是利用完全平方公式解题。
生2:还有其他分组方式,如把(a+c)看做一项,(b+d)看做一项,也能直接运用公式解题。
师:方法一样吗?生:一样的。
师:还能变下去吗?这样可以变出多少道题?
生:无数道。
师:最终是几道题?
生:(齐答)一道题。
师:现在,老师相信每个学生都会解这样的题了。课下,请同学们思考:如果把(a+b)2的指数变化一下,又可以变出多少道题,你能计算出来吗?
(活动:投影显示一组题目,如(a+b)3、(a+b)4??)
说明:这就是老师进一步利用这个例子论证“公式中的a、b可表示数,也可表示一个单项式、多项式或其他的式子”的变化规律。
3.通过大量的习题验证通用工具,学生并且自造通用工具。 师:通过前面的检测,看出同学们已经基本掌握了完全平方公式。下面进入达标检测。
(活动:投影显示达标检测题)
(1).填空:
①(2x+3y)2=______;②( a-1)2= a2-____+1;
③当x=5y=2(x+y)(x-y)-(x-y)2=_________。
(2)计算:
①(-2m-n)2;②(2-3a2)(3a2-2);③(-cd+ )2;④(n+3)2-n2
(3).计算:(x+2y+3)(x+2y-3)
生:(积极、主动地在作业本上完成上面练习题。)
师:(巡视,批阅完成快的学生的作业,最后集体点评,只讲不会的。)
说明:第2①题,可先变形为[-(2m+n)]2,再按(a+b)2的公式展开,也可直接理解成-2m与n的差,按(a-b)2计算;第2②题将(2-3a2)变形为-(3a2-2),原式可转化为-(3a2-2)2,直接运用公式计算;第2④题把(n+3)看做a、n看做b,逆用平方差公式也是一种解法,同时训练学生的逆向思维;第3题是下节课训练内容,在这里可以提前,引导学生通过变形,就可以得出:
(x+2y+3)(x+2y-3)=[(x+2y)+3]·[(x+2y)-3]=(x+2y)2-32=x2+4xy+4y2-9,这里还是把(x+2y)看做a、3看做b,进一步验证了“通用工具”,即“解决某一类问题的一种思维方式或方法”。拓展提高还是在“变”上下功夫,要求学生能较熟练掌握,逐步达到脑算的层次,水到渠成,能力自然提高,学生就会自造“通用工具”了。 师:本节课你有什么收获?还有什么问题吗?
生:这节课我们学习、研究了完全平方公式(a±b)2=a2±2ab+b2,知道了公式中a、b,可以是单项式也可以是多项式,能运用公式解题了,能力上又有新的提高.
师:课下完成本节课的作业.[投影显示]思考题:计算(a+b+c)2、(a+b+c+d)2的结果,观察有什么规律,感兴趣的同学还可计算(a+b)3、(a+b)4的结果,你又能发现什么规律.
本文来源:http://www.010zaixian.com/yuwen/jiaoxuekejian/428773.htm