本节课我的设计师先通过课前练习,以达到温故而知新的目的,接着是列出无理数常见的三类数,让学生观察总结这三类数的特点——无限,不循环,从而得出无理数的概念——无限不循环小数。接着要引导学生总结,注意重点字眼,无限和不循环,在这基础上,我就马上出对应的练习让学生分辨,比如学生误以为带根号的就是无理数,要区分带根号的还要开方开不尽得才是。下一步就梳理成章的得出实数包括无理数和有理数。而这时就要通过类比方法,得出实数的另一种分法,通过回忆,有理数与数轴上的点一一对应,提出问题,无理数能在数轴上表示出来吗?先让学生看课本的探究,讨论,之后用课件的动画形式呈现,从而得出无理数与数轴上的点也一一对应。同样通过类比,得出直角坐标系中的点与有序实数之间也是一一对应,有理数的相反数和绝对值的意义同样适合于实数。
这节课的重点是学生要知道无理数的概念,能把数分类,能知道实数包括有理数和无理数,难点是在数轴上表示一个无理数,这个不要求学生掌握,知道无理数能在数轴上表示出来即可。而对于求无理数的绝对值和相反数,是重点也是难点,特别是求 的绝对值,学生就觉得比较抽象,因为学生对于无理数就感觉很陌生,他们心里有疑问,到底等于多少?不得出一个确切的值,他们心里感觉不踏实。这里就一定要复习绝对值的概念,总结出绝对值的性质,要求的绝对值,其实就是要判断 的值是正数还是负数,这又要涉及到相反数,在此之前就一定要复习怎样求一个数的相反数的方法了。
我认为这节课因为比较抽象,所以一定要通过学生已有的有理数的知识来进行类比学习,这是一种很重要的数学方法。另外在学生思维中形成数形结合思想,为以后利用数形结合思想求解打好基础。还有这节课的内容比较多,也比较抽象,所以课前布置学生先预习,讲起来学生感觉会没那么抽象,起码头脑中有点印象。
本文来源:http://www.010zaixian.com/yuwen/jiaoxuefansi/1025273.htm