实用的数学学习计划集合五篇
日子在弹指一挥间就毫无声息的流逝,我们的学习目标和学习任务同时也不断变化,我们要好好计划今后的学习,制定一份学习计划了。学习计划要怎么写?想必这让大家都很苦恼吧,以下是小编帮大家整理的数学学习计划5篇,欢迎阅读,希望大家能够喜欢。
数学学习计划 篇1
知识与技能
1、掌握三位数除以一位数的笔算方法,并能正确计算;了解24时计时法;能笔算两位数乘两位数的乘法;能认、读、写小数,会计算一位小数的加减法。能认、读、写分数,会比较两个分数的大小,能计算同分母分数的加减法。
2、初步感知旋转、平移现象,能在方格纸上画出一个简单图形平移后的图形;在实践活动当中,体会长度单位千米和毫米的含义,知道1千米=1000米,1厘米=10毫米,会进行简单的单位换算;认识面积的含义,能用自选的单位估计和测量图形的面积,认识面积单位,会进行简单的单位换算;掌握长方形、正方形的面积公式。
3、对数据的收集、整理、描述和分析过程有所体验,了解“平均数”的意义,会求简单数据的平均数(结果为整数)。
情感与态度
1、学生在老师的指导下,能从日常的生活中发现并提出简单的数学问题,有主动探究学习的愿望。
2、学会与人合作,并且体会与他人合作的重要性。
3、使学生经历观察、操作、归纳的数学活动的过程,了解同一问题可有不同的解决方法,并感受到数学思考过程的合理性。
4、形成良好的学习习惯。
预习重点、难点:
1、了解长方形、正方形的一些特征,认识面积的含义,能用自选的单位估计和测量图形的面积,掌握长方形、正方形的面积公式。
2、掌握三位数除以一位数的笔算方法,并能正确计算;能笔算两位数乘两位数的乘法;。
3、对数据的收集、整理、描述和分析过程有所体验,了解“平均数”的意义,会求简单数据的平均数(结果为整数)。
数学学习计划 篇2
从学习的几个环节可把学习方法分为以下五个方面
1.读的方法。初一同学往往不善于读数学书,在读的过程中,易沿用死记硬背的方法。那么如何有效地读数学书呢?平时应做到:
一是粗读。先粗略浏览教材的枝干,并能粗略掌握本章节知识的概貌,重、难点;
二是细读。对重要的概念、性质、判定、公式、法则、思想方法等反复阅读、体会、思考,领会其实质及其因果关系,并在不理解的地方作上记号(以便求教);
三是研读。要研究知识间的内在联系,研讨书本知识安排意图,并对知识进行分析、归纳、总结,以形成知识体系,完善认知结构。
读书,先求读懂,再求读透,使得自学能力和实际应用能力得到很好的训练。
2.听的方法。“听”是直接用感官去接受知识,而初一同学往往对课程增多、课堂学习量加大不适应,顾此失彼,精力分散,使听课效果下降。因此应在听课的过程中注意做到:
(1)听每节课的学习要求;
(2)听知识的引入和形成过程;
(3)听懂教学中的重、难点(尤其是预习中不理解的或有疑问的知识点);
(4)听例题关键部分的提示及应用的数学思想方法;
(5)听好课后小结。
3.思考的方法。“思”指同学的思维。数学是思维的体操,学习离不开思维,数学更离不开思维活动,善于思考则学得活,效率高;不善于思考则学得死,效果差。可见,科学的思维方法是掌握好知识的前提。七年级学生的思维往往还停留在小学的思维中,思维狭窄。因此在学习中要做到:
(1)敢于思考、勤于思考、随读随思、随听随思。在看书、听讲、练习时要多思考;
(2)善于思考。会抓住问题的关键、知识的重点进行思考;
(3)反思。要善于从回顾解题策略、方法的优劣进行分析、归纳、总结。
4.问的方法。孔子曰:“敏而好学,不耻不问。”爱因斯坦说过:“提出问题比解决问题更重要。”问能解惑,问能知新,任何学科的学习无不是从问题开始的。但七年级同学往往不善于问,不懂得如何问。因此,同学在平时学习中应掌握问问题的一些方法,主要有:
(1)追问法。即在某个问题得到回答后,顺其思路对问题紧追不舍,刨根到底继续发问;
(2)反问法。根据教材和教师所讲的内容,从相反的方向把问题提出来;
(3)类比提问法。据某些相似的概念、定理、性质等的相互关系,通过比较和类推提出问题;
(4)联系实际提问法。结合某些知识点,通过对实际生活中一些现象的观察和分析提出问题。
此外,在提问时不仅要问其然,还要问其所以然。
5.记笔记的方法。
很大一部分学生认为数学没有笔记可记,有记笔记的学生也是记得不够合理。通常是教师在黑板上所写的都记下来,用“记”代替“听”和“思”。
有的笔记虽然记得很全,但收效甚微。因此,学生作笔记时应做到以下几点:
(1)在“听”,“思”中有选择地记录;
(2)记学习内容的要点,记自己有疑问的疑点,记书中没有的知识及教师补充的知识点;
(3)记解题思路、思想方法;
(4)记课堂小结。并使学生明确笔记是为补充“听”“思”的不足,是为最后复习准备的,好的笔记能使复习达到事倍功半的效果。
正确的学习态度和科学的学习方法是学好数学的两大基石。这两大基石的形成又离不开平时的数学学习实践,下面就几个数学学习实践中的具体问题谈一谈如何学好数学。
1.数学运算
运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习:从目前的数学评价来说,运算准确还是一个很重要的方面,运算屡屡出错会打击同学学习数学的信心,从个性品质上说,运算能力差的同学往往粗枝大叶、不求甚解、眼高手低,从而阻碍了数学思维的进一步发展。从学生试卷的自我分析上看,会做而做错的题不在少数,且出错之处大部分是运算错误,并且是一些极其简单的小运算,错误虽小,但决不可等闲视之,决不能让一句“马虎”掩盖了其背后的真正原因。认真分析运算出错的具体原因,是提高运算能力的有效手段之一。在面对复杂运算的时候,常常要注意以下两点:
(1)情绪稳定,算理明确,过程合理,速度均匀,结果准确;
(2)要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。
2.数学基础知识
理解和记忆数学基础知识是学好数学的前提。同一个数学概念,在不同人的头脑中存在的形态是不一样的。
(1)理解的标准:“准确”、“简单”和“全面”。
“准确”就是要抓住事物的本质;
“简单”就是深入浅出、言简意赅;
“全面”则是既见树木,又见森林,不重不漏。
对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其包含的数学思想方法和数学思维方法。
(2)记忆是大脑对知识的识记、保持和再现,是知识的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“一元一次方程”六个字,你就会想到:它的定义是什么?最简方程是什么?它的解的概念,及解方程的一般步骤。不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。总之,分阶段地整理数学基础知识,并能在理解的基础上进行记忆,可以极大地促进数学的学习。
3.数学解题
学数学没有捷径可走,保证做题的数量和质量是学好数学的必经之路。
(1)如何保证数量?
①选准一本与教材同步的辅导书或练习册。
②做完一节的全部练习后,对照答案进行批改。
③选择有思考价值的题,与同学、老师交流,并把心得记在自习本上。
④每天保证1小时左右的练习时间。
(2)如何保证质量?
①题不在多,而在于精。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?
②落实:不仅要落实思维过程,而且要落实解答过程。
③复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法。(建立一本错题集)
本文来源:http://www.010zaixian.com/shiyongwen/3638529.htm