数学建模思微积分数学论文
第1篇:数学文化:贯穿高职微积分有效教学的必由之路
数学文化是具有内涵和外延的系统概念,由于数学文化是高职微积分有效教学的重要前提,同时也是促进教师有效教学和学生高效学习的源泉,因此数学文化在理论和教学实践中都是贯穿高职微积分有效教学的必由之路。
数学文化是国内外研究的热点课题,也是目前教育界积极探索实践的问题。它的内涵在于数学作为文化的一种类型,具有普遍性和特殊性,其特殊性也是作为数学所独有的,如数学思想的高度抽象性、数学精神的深度概括性、数学语言的完美简洁性、数学方法的独特灵活性。它的外延在于数学作为文化同时与经济、科技、人文、历史、美学等各个领域紧密联系,而这种联系都促进人类文明的进步与发展。
1 数学文化是贯穿高职微积分有效教学的必由之路
1.1 数学文化是高职微积分有效教学的重要前提
有效教学的理论源于20世纪上半叶西方教学科学化运动。通常有效教学指“教师遵循教学活动的客观规律,以尽可能少的时间、精力和物力投入,取得尽可能多的教学效果,从而实现特定的教学目标,满足社会和个人的教育价值需要。”同时笔者认为所谓有效教学是教师有效的教学与学生高效的学习的完美结合,即教师的“教”与学生的“学”都达到事半功倍的效果。数学文化是微积分进行有效教学的重要前提条件,因为数学文化渗透高职微积分的各个方面。
数学文化贯穿于微积分发展历史中。虽然微积分做为正式学科产生于近代,但是微积分的思想却始于古代。古希腊阿基米德的《圆的测量》与春秋庄子“一尺之捶,日取其半,万世不竭”等都体现了微积分的思想。17世纪伟大科学家牛顿和莱布尼兹创设了微积分的系统理论,并广泛的应用于天文学、物理学等领域,但其中的过程细节存在逻辑矛盾,由此产生了第二次数学危机。19世纪柯西等数学家从理论上解决“无穷小量”问题,从而结束了长达两个世纪的第二次数学危机。目前微积分的应用则更加广泛。
数学文化贯穿于微积分的思想方法中。微积分的学习不仅是知识的学习,也不仅是培养逻辑思维能力、综合计算能力、创新发展能力,更要从思想方法的高度来正确把握微积分,理解微积分思想中蕴涵的辩证法思想、美学思想、科学哲学思想、人类思维发展的艰辛曲折过程。微积分思想的理解不是依靠做题目解答出来的,而是必须依托数学文化的诠释和解读。
1.2 数学文化是促进教师对微积分有效教学的助推剂
数学文化帮助教师更有效的使学生理解微积分。在具体的高职微积分教学实践中,高职学生对极限、微积分的概念和符号(如“lim”、“df(x)”、“∫”)若仅从教科书来解读,往往不理解,甚至死记硬背都记不下。而如果在教学中从数学文化的角度来解读,则可以极大帮助学生理解微积分。如极限可以从微积分发展历史来加以介绍;积分的概念可以适当解读为最早为解决不规则图形的面积(如同学们熟知的圆面积公式来源)进而解决体积、质量等问题;“∫”则是“Sum”首字母的拉长体现了数学符号的简洁概括美。
数学文化帮助教师更有效的组织教学。通过数学文化贯穿高职微积分有效教学中,可以使教师在教学手段、教学形式、教学方法等方面都有新的突破,从而更有效的组织教学。在教学手段方面,可以在传统教学中适当穿插介绍微积分发展史的多媒体资料、通过多媒体动画效果展示极限的“无限接近”过程、适当运用Matlab软件计算微积分等。在教学形式方面,在班级授课的基础上可以围绕极限、微积分在日常生活中的应用进行分组讨论,然后将每组的结果予全班同学分享,从而提高教学的趣味性。在教学方法方面,高职微积分教学如果仅仅使用讲授法教学,其结果必然不佳。由于数学文化的博大精深,更由于数学文化与微积分的紧密联系,数学文化给予高职微积分教学提供了多种教学方法的选择,如讨论法可以应用在求极限的几种方法,探究法可以应用在从数学文化的角度探索出积分的概念。
1.3 数学文化是促进高职学生对微积分高效学习的发动机
数学文化激发学生学习高职微积分的兴趣。学生学习兴趣对于高效学习的实现起着重要的作用。笔者经过调查发现,大部分高职学生并非初始就对微积分缺乏兴趣,而是认为微积分课程缺少生动有趣。数学文化贯穿高职微积分有效教学中可以使原本感觉乏味的课程变得生动有趣,因为学生从微积分中的数学史感受人类发展道路的曲折,学生从微积分中的数学美学会欣赏自然的和谐美,学生从微积分中的数学思想领悟思想方法的重要性,学生从微积分中的人文价值理解学习数学的目标。
数学文化激发学生学习高职微积分的学习动机。学习动机是引起和维持个体的学习行为以满足学习需要的心理倾向。在目前激烈社会竞争情况下,高职学生有着强烈的专业发展动机,渴望升学成为他们最直接的目的。因此,高效学习微积分、高效学好微积分成为大部分高职学生的迫切需要。若仅仅通过题目练习,则往往在一知半解的情况下并不能达到良好的效果。高职微积分中蕴涵的数学文化,它的丰富的内涵和外延往往能够满足学生学好微积分的需要。因为它能够从辩证法的高度揭示微积分概念的本质,它能够从历史美学的方向把握微积分课程的总体脉络,它能够从思想方法的角度启发解决微积分问题的思路。
2 数学文化贯穿高职微积分有效教学的实践策略
2.1 数学史贯穿高职微积分有效教学
数学史是数学理论的建构发展史,同时也是人类理性思维的探索历程史。教师通过数学史的解读可以让学生理解微积分是不断进步的生动有趣的课程。首先,通过数学史创设的情境让学生感受数学的魅力。教师可以介绍微积分概念的起源和发展、数学家的趣闻逸事、古今数学思想方法的比较等。具体如:函数教学时介绍康托、集合论引起的悖论以及第三次数学危机,极限连续教学时介绍柯西、古代极限思想,导数微分教学时介绍符号的演变、第二次数学危机等。其次,数学历史故事、事件、过程培养学生创新意识和探索精神。如可以介绍瑞士数学家欧拉,在其双目完全失明的情况下,他凭借惊人的毅力和记忆对微积分研究达17年之久,期间还口述了几本书和几百篇论文,使微积分有了里程碑式的发展。
2.2 数学美贯穿高职微积分有效教学
数学美具有美的特性,教师通过数学美的诠释使学生学会感受美、欣赏美。因为数学美更体现在具有简洁、对称、和谐的特性。首先,微积分符号体现数学美的简洁性。微积分符号的简洁性增进思维敏捷度,将相对复杂的含义简单的表示出来,促进微积分的发展。如:函数的导数只需使用f’(x)即可,但若沿用极限来表示,则显得复杂并难以理解。其次,微积分解题应用体现数学美的对称体性。微积分中数形对称颇为常见,这也常常能给理解记忆和解题带来帮助。如:导数的积的公式(uv)’=u’v+uv’,分部积分公式∫udv = uv-∫vdu可变形为:∫udv +∫vdu=uv+C。再次,微积分公式体现数学美的和谐性。和谐性贯穿于微积分之中。微积分基本定理中微分的局部性质与积分的整体性质是统一的。如:由于微分与积分互为逆运算,从基本导数公式可以直接推出基本积分公式;又如:罗尔定理、拉格朗日中值定理、柯西中值定理、泰勒定理之间密切联系体现了微分中值定理的统一与和谐。
2.3 联系实际贯穿高职微积分有效教学
微积分是高等数学的基础,同时也是解决其他自然科学的基础。教师通过将联系实际贯穿微积分使学生充分认识到其解决实际问题的价值和意义。微积分联系实际的应用,可以通过对物理(特别是运动与力学)、几何、经济、生物中数量变化关系的分析,建立简单的数学模型并通过微积分计算加以解决,从而丰富教学内容、调动学生积极性、拓宽学生思路,逐步将学生引导到微积分的学习中来。
2.4 强调过程贯穿高职微积分有效教学
笔者认为高职微积分有效教学必须强调过程教学,必须强调微积分知识发生、发展的过程。教师通过强调过程贯穿高职微积分,从而促使学生充分理解微积分的概念。如:导数教学中,若教师使用常规讲授法,即先直接讲导数的定义,而后给出基本导数公式,最后通过习题给学生练习巩固。则学生只能是机械的记忆公式然后解题,并未真正理解导数。因此,强调过程的有效教学应该是先例举如自由落体瞬时速度问题,让学生带着这个问题去主动探寻答案,而后通过极限计算简单函数的导数,再给出导数的定义,教师例举较复杂函数的导数计算,再给出基本导数公式,最后进行巩固练习。
本文来源:http://www.010zaixian.com/shiyongwen/2452001.htm