1.从甲地到乙地,如果车速每小时提高20千米,那么时间由4小时变为3小时。甲乙两地相距 千米。
240
3个小时多行20×3=60(千米),这60千米原来需行1小时,所以两地相距60×4=240(千米)。
根据比例关系,原来与现在所用时间比为4︰3,则原来与现在的速度比为3︰4,所以按比例分配得,现在的速度为20÷(4-3)×4=80(千米),所以路程为80×3=240(千米)。
13. 某小学即将开运动会,一共有十项比赛,每位同学可以任报两项,那么要有 ___ 人报名参加运动会,才能保证有两名或两名以上的同学报名参加的比赛项目相同.
46
十项比赛,每位同学可以任报两项,那么有 =45种不同的报名方法.
那么,由抽屉原理知为 45+1=46人报名时满足题意.
14.
20. 如图,ABCD是矩形,BC=6cm,AB=10cm,AC和BD是对角线,图中的阴影部分以CD为轴旋转一周,则阴影部分扫过的立体的体积是多少立方厘米?(π=3.14)
565.2立方厘米
设三角形BOC以CD为轴旋转一周所得到的立体的体积是S,S等于高为10厘米,底面半径是6厘米的圆锥的体积减去2个高为5厘米,底面半径是3厘米的圆锥的体积减去2个高为5厘米,底面半径是3厘米的圆锥的体积。即:
S= ×62×10×π-2× ×32×5×π=90π,
2S=180π=565.2(立方厘米)
S也可以看做一个高为5厘米,上、下底面半径是3、6厘米的圆台的体积减去一个高为5厘米,底面半径是3厘米的圆锥的体积。
4.如图,点B是线段AD的中点,由A,B,C,D四个点所构成的所有线段的长度均为整数,若这些线段的长度的积为10500,则线段AB的长度是 。
5
由A,B,C,D四个点所构成的线段有:AB,AC,AD,BC,BD和CD,由于点B是线段AD的中点,可以设线段AB和BD的长是x,AD=2x,因此在乘积中一定有x3。
对10500做质因数分解:
10500=22×3×53×7,
所以,x=5,AB×BD×AD=53×2,AC×BC×CD=2×3×7,
所以,AC=7,BC=2,CD=3,AD=10.
5.设有十个人各拿着一只提桶同时到水龙头前打水,设水龙头注满第一个人的桶需要1分钟,注满第二个人的桶需要2分钟,…….如此下去,当只有两个水龙头时,巧妙安排这十个人打水,使他们总的费时时间最少.这时间等于_________分钟.
125分钟
不难得知应先安排所需时间较短的人打水.
不妨假设为:
第一个水龙头
第二个水龙头
第一个
A
F
第二个
B
G
第三个
C
H
第四个
D
I
第五个
E
J
显然计算总时间时,A、F计算了5次,B、G计算了4次,C、H计算了3次,D、I计算了2次,E、J计算了1次.
那么A、F为1、2,B、G为3、4,C、H为5、6,D、I为7、8,E、J为9、10.
所以有最短时间为(1+2)×5+(3+4)×4+(5+6)×3+(7+8)×2+(9+10)×1=125分钟.
评注:下面给出一排队方式:
第一个水龙头
第二个水龙头
第一个
1
2
第二个
3
4
第三个
5
6
第四个
7
8
第五个
9
10
想象一下,如果你去理发店理发,只需要一分钟,可能这时已有一位阿姨排在你的前面,她需要1小时。这时,你请她让你先理,她可能很轻松地答应你了。
可是,如果反过来,你排队在前,这位阿姨请你让她先理,你很难同意她的要求,而且大家都认为她的要求不合理,这是为什么呢?
可以看到,一个水龙头时的等待总时间算法是:
S=A+A+B+A+B+C+A+B+C+D+A+B+C+D+E=5A+4B+3C+2D+E
所以,要想使总时间S最小,则要A<B<C<D<E.
两个水龙头可参见排队方法,但排队方法不唯一。有一个原则:
(A+F)<(B+G)<(C+H)<(D+I)<(E+J)
6.用140个棱长为1的小正方体粘成一个大的长方体,若拆下沿棱的小正方体,则余下92个小正方体(见右图). 留下的多面体的表面积是________.
142.
大长方体的长、宽、高都大于2,否则所有的小正方体都在棱上,与题意不符. 140分解成3个大于2的自然数的乘积只有457,所以大长方体的长、宽、高分别是4,5,7,表面积是
(45+47+57)2=166.
拆下沿棱的小正方体后,对比原来的表面积,相当于每个面减少4或每个角减少3,表面积为
166-46=142 或 166-38=142.
整体思考的经典范例,一是从整体考虑前后表面积的变化关系,看变化可以简化运算。
二是,如何看变化,本题可以用“阳光照面”法。
7. 在三位数中,个位、十位、百位都是一个数的平方的共有 个。
48
百位有1、4、9三种选择,十位、个位有0、1、4、9四种选择。满足题意的三位数共有
3×4×4=48(个)。
8. 老师在黑板上写了一个自然数。第一个同学说:“这个数是2的倍数。”第二个同学说:“这个数是3的倍数。”第三个同学说:“这个数是4的倍数。”……第十四个同学说:“这个数是15的倍数。”最后,老师说:“在所有14个陈述中,只有两个连续的陈述是错误的。”老师写出的最小的自然数是 。
60060
2,3,4,5,6,7的2倍是4,6,8,10,12,14,如果这个数不是2,3,4,5,6,7的倍数,那么这个数也不是4,6,8,10,12,14的倍数,错误的陈述不是连续的,与题意不符。所以这个数是2,3,4,5,6,7的倍数。由此推知,这个数也是(2×5=)10,(3×4=)12,(2×7)14,(3×5=)15的倍数。在剩下的8,9,11,13中,只有8和9是连续的,所以这个数不是8和9的倍数。2,3,4,5,6,7,10,11,12,,13,14,15的最小公倍数是22×3×5×7×11×13=60060。
12.小王和小李平时酷爱打牌,而且推理能力都很强。一天,他们和华教授围着桌子打牌,华教授给他们出了道推理题。华教授从桌子上抽取了如下18张扑克牌:
红桃A,Q,4 黑桃J,8,4,2,7,3,5
本文来源:https://www.010zaixian.com/shiti/2526544.htm