欢迎来到010在线作文网!

高二数学期末复习题参考

试题 时间:2021-08-31 手机版

  时间:120分钟满分:150分

  一,选择题(每题5分,共60分)

  1,参数方程为表示的曲线是()

  A.线段B.双曲线一支C.圆D.射线

  2,极坐标方程表示的曲线为()

  A.一条射线和一个圆B.两条直线C.一条直线和一个圆D.一个圆

  3,使复数为实数的充分而不必要条件是()

  A.B.C.为实数D.为实数

  4,有一段推理是这样的:直线平行于平面,则直线于平面内的所有直线;已知直线,直线,且‖,则‖.这个结论显然是错误的,这是因为()

  A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

  5,二项展开式中,有理项的项数是()

  (A)3

  (B)4

  (C)5

  (D)6

  6,4名男生5名女生排成一排,已知4名男生顺序一定且5名女生顺序也一定的不同排法种数为()

  A.126B.3024C.15120D.2880

  7,在的展开式中,含的奇次幂的项之和为,当时,等于()

  A.B.C.D.

  8,已知集合,,若从A到B的映射使得B中的每个元素都有原象,且,则这样的映射共有()

  A.210个B.120个C.252个D.126个

  9,已知复数,,则在复平面上对应的点位于()

  A.第一象限B.第二象限C.第三象限D.第四象限

  10,某人对一目标进行射击,每次命中率均为0.25,若使至少命中1次的概率不小于0.75,则至少应射击()

  A,4次B,5次D,6次D,8次

  11,已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是()

  A.=1.23x+4B.=1.23x+5C.=1.23x+0.08D.=0.08x+1.23

  12,利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅下表来确定断言X和Y有关系的可信度.如果k5.024,那么就有把握认为X和Y有关系的百分比为()

  P(k)

  0.50

  0.40

  0.25

  0.15

  0.10

  0.05

  0.025

  0.010

  0.005

  0.001

  k

  0.455

  0.708

  1.323

  2.072

  2.706

  3.84

  5.024

  6.635

  7.879

  10.83

  A.25%B.75%C.2.5%D.97.5%

  二,填空题(每题4分,共16分)

  11,若,那么的值是.

  12,已知随机变量服从正态分布N(0,1),如果P(1)=0.8413,则

  P(-10)=.

  13,曲线:上的点到曲线:上的点的最短距离为.

  14,如图,类比直角三角形与直角四面体的性质,填写下表:

  平面内直角三角形的性质

  空间中直角四面体的性质

  在ABC中,BCA=900,点C在AB上的射影为D,则有下列结论:

  (1)点D在线段AB上.

  (2)AC2=AD*AB,

  (3)CB2=DB*AB,

  (4)

  在四面体SABC中,三个平面SAB,平面SBC,平面SAC两两垂直,点S在底面上的射影为O,则有类似结论:

  (1)

  (2)

  (3)

  (4)

  三,解答题(共74分)

  17,(12分)已知直线经过点,倾斜角,

  (1)写出直线的参数方程.

  (2)设与圆相交与两点,求点到两点的距离之积.

  18,(1)在极坐标系中,已知圆C的圆心C,半径=1,求圆C的极坐标方程;

  (2)若以极点为原点,极轴为轴正半轴,建立直角坐标系,试将上述极坐标方程化为普通方程;并求将圆C变换为曲线:的一个变换公式

  19,(12分)将7个小球任意放入四个不同的盒子中,每个盒子都不空,

  (1)若7个小球相同,共有多少种不同的放法

  (2)若7个小球互不相同,共有多少种不同的'放法

  20,(本题满分12分)为了对2006年佛山市中考成绩进行分析,在60分以上的全体同学中随机抽出8位,他们的数学,物理,化学分数对应如下表(各科成绩均为百分制),

  (1)画出关于的散点图,

  (2)用变量y与x,z与x的相关系数说明物理与数学,化学与数学的相关程度;

  (3)求y与x,z与x的线性回归方程(系数精确到0.01),并用相关指数比较所求回归模型的效果.

  参考数据:,,,,,,,,,,.

  21,(本题满分12分)一个口袋中装有大小相同的2个白球和4个黑球.

  (Ⅰ)采取放回抽样方式,从中摸出两个球,求两球恰好颜色不同的概率;

  (Ⅱ)采取不放回抽样方式,从中摸出两个球,求摸得白球的个数的期望和方差.

  22,(本题满分14分)是否存在常数,使得对一切正整数都成立并证明你的结论.

  参考答案:

  1-5,DCBAA6-10,ACDDB11-12,CD13,i14,0.341315,1

  16,(1)点O在ABC内;(2),(3),(4)

  17解:(1)直线的参数方程为,即

  (2)把直线代入

  得

  ,则点到两点的距离之积为

  18解.(1);(2),

  19解:(1)解法1:∵7=1+1+1+4=1+1+2+3=1+2+2+2,

  分三类,共有分法

  解法2(隔板法):将7个小球排成一排,插入3块隔板,

  故共有分法

  (2)∵7=1+1+1+4=1+1+2+3=1+2+2+2,

  共有分法

  20解答:(1)略

  (2)变量y与x,z与x的相关系数分别是

  可以看出,物理与数学,化学与数学的成绩都是高度正相关.

  (3)设y与x,z与x的线性回归方程分别是,.

  根据所给的数据,可以计算出,

  .

  所以y与x和z与x的回归方程分别是

  ,.

  又y与x,z与x的相关指数是,.

  故回归模型比回归模型的拟合的效果好.

  21解:(1),或

  (2)设摸出的白球的个数为,则=0,1,2

  22解:假设存在常数使等式成立,令得:

  解之得,下面用数学归纳法证明:

  对一切正整数都成立.(略)

【高二数学期末复习题参考】相关文章:

1.期末复习题参考

2.高二数学期末复习题及答案

3.语文期末复习题

4.二年级英语期末复习题参考

5.初一上册地理期末复习题试题参考

6.管理案例分析期末复习题参考

7.小升初数学复习题参考

8.高二数学选修4综合复习题


本文来源http://www.010zaixian.com/shiti/2460359.htm
以上内容来自互联网,请自行判断内容的正确性。若本站收录的信息无意侵犯了贵司版权,请给我们来信(zaixianzuowenhezi@gmail.com),我们会及时处理和回复,谢谢.