如何在充满激烈竞争的竞赛中取得好的成绩,为大家提供了五年级关于数的整除问题的奥数试题及答案,希望能够真正的帮助到大家。
试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.
考点:数的整除特征.
分析:根据题意,可采用假设的方法进行分析,100个自然数任意的5个数相连,可以分成20个组,使得在任何5个相连的数中,都至少有两个数可被3整除,那么会有40个数是3的倍数,事实上在1至100的自然数中只有33个是3倍数,所以不能.
解答:假设能够按照题目要求在圆周上排列所述的100个数,
按所排列顺序将它们每5个分为一组,可得20组,
其中每两组都没有共同的`数,于是,在每一组的5个数中都至少有两个数是3的倍数.
从而一共会有不少于40个数是3的倍数.但事实上在1至100的这100个自然数中只有33个数是3的倍数,
导致矛盾,所以不能.
答:不能.
点评:此题主要考查的是在1至100的100个自然数中能被3整除的有多少。
以上就是为大家推荐的五年级关于数的整除问题的奥数试题及答案,希望大家学习愉快。
【关于数的整除问题的奥数试题及答案】相关文章:
6.数的整除教案
7.数的整除教学反思
本文来源:http://www.010zaixian.com/shiti/2345108.htm