数学教学计划 篇7
一、教学目标
1、面向全体学生,促进学生全面和谐与主动的发展,三维目标有机整合,保证学生身心健康成长,尊重学生的主体地位,调动学生的积极性。
2、激发学生学习兴趣,培养学生严谨的态度,培养学生的好习惯。
3、发展善于合作,勤于思考,爱于学习的科学精神,并锻炼学生自学能力。
4、培养学生爱国情感,团结合作能力。
5、锻炼学生发现问题、分析问题、解决问题的能力,锻炼学生动手能力。
二、教学资源分析
本学期的教学内容分为五章,分别是第十六章 分式、第十七章 反比例函数、第十八章勾股定理、第十九章 四边形与第二十章 数据的分析。
其中教学任务的重点是了解分式的基本性质,掌握有关分式的四则运算法则,会用一元一次分式方程解决实际问题;理解反比例函数的概念,会画反比例函数的图象,会求反比例函数的解析式,能利用函数性质解决一些简单的实际问题;会用定理解决简单问题,会用勾股定理的逆定理判定直角三角形;掌握平等四边形、矩形、菱形、正方形、梯形的概念,掌握特殊四边形的有关性质和判定方法;理解平均数、中位数和众数等统计量的统计意义,会算权平均数、极差和方差,会用样本平均数、方差估计总体的平均数方差。
教学资源除了教材、教师用书,还可以充分利用集体备课、网络资源、多媒体资源等。另外,学生也可以利用身边的生活用品制作具,这也锻炼了学生的动手能力及观察能力。
三、学生基本情况分析
四、六班学生大多数可以做到课上认真学习,课后完成作业,通过小组合作的形式完成教学内容,但仍有一小部分学生上课溜号或搞小动作,注意力不集中,作业不认真完成,没有学习气氛。
五、教学方法设计
1、在教学设计中,要让学生参与学习,主动学习,锻炼学生自学能力。利用分组加分的方法激发学生的积极性。
2、检查学生的预习情况,适当加分扣分,培养学生认真预习的习惯;上课充分利用好学生的好胜心理,让学生上前台讲解,其他学生补充改正,培养学生认真听讲、认真阅读思考、大胆发言、记笔记的好习惯。
3、认真设计课前引言、课中引导用语,培养学生发现问题的习惯。
4、严格要求学生的书写习惯,培养学生认真审题、检验改错的好习惯。
5、充分利用好学校提供的教学教具,例如:挂图、多媒体、网络,及即将安装的班班通。
五、教学进度与课时分配
周次 时间 课题 课时
一 2.29-3.2 16.1 分式 3课时
二 3.3-3.9 16.2 分式的运算 6课时
三 3.10-3.13 16.3 分式方程 3课时
3.14 数学活动 1课时
3.15 小结 1课时
四 3.16-3.22 单元复习 4课时
五 3.23-3.27 17.1反比例函数 3课时
六 3.28-3.31 17.2实际问题与反比例函数 4课时
七 4.5 数学活动 1课时
4.6 小结 1课时
八 4.9-4.12 单元复习 4课时
九 4.13-4.18 18.1勾股定理 4课时
4.19-23 18.2勾股定理的逆定理 3课时
十 4.24 数学活动 1课时
4.25 小结 1课时
4.26-5.2 单元复习 4课时
十一 5.3-5.10 19.1平行四边形 6课时
十二 5.11-5.18 19.2特殊的平行四边形 6课时
十三 5.21-5.22 19.3梯形 2课时
5.23-5.24 19.4课题学习:重心 2课时
十四 5.25 数学活动 1课时
5.28 小结 1课时
十五 5.29-6.5 单元复习 6课时
十六 6.6-6.12 20.1数据的代表 5课时
十七 6.13-6.19 20.2数据的波动 5课时
6.20-6.21 20.3课题学习 2课时
十八 6.25 数学活动 1课时
6.26 小结 1课时
十九 6.27-7.2 单元复习 4课时
二十 7.3-期末 总复习 约8课时
六、教学评价方案
根据学生日常生活中的品行表现、校园活动参与情况、课外活动参与情况、学生互评、上课表现情况、课后作业完成情况、课后预习情况,课堂测试情况及期中期末考试成绩,全方面综合评价学生。
七、好习惯养成
1、培养学生认真预习的习惯;
2、培养学生认真听讲的习惯;
3、培养学生认真阅读思考的习惯;
4、培养学生大胆发言的习惯;
5、培养学生记笔记的习惯;
6、培养学生发现问题的习惯。
7、认真审题的习惯;
8、认真书写的习惯;
9、检验改错的习惯。
数学教学计划 篇8
一、教材分析
1、教材地位、作用
本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3。2。1节古典概型。它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。
2、学情分析
学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。
二、教学目标
1、知识与技能目标
⑴、理解等可能事件的概念及概率计算公式;⑵、能够准确计算等可能事件的概率。
2、过程与方法
根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。
3、情感态度与价值观
概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。
三、重点、难点
重点:理解古典概型的概念及利用古典概型求解随机事件的概率。
难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
四、教学过程
1、创设情境提出问题
师:在考试中遇到不会做的选择题同学们会怎么办?在你不会做的前提下,蒙对单选题容易还是蒙对不定项选择题容易?这是为什么?
【设计意图】通过这个同学们经常会遇到的问题,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的认知规律。随着新问题的提出,激发了学生的求知欲望,使课堂的有效思维增加。
2、抽象思维形成概念
师:考察试验一“抛掷一枚质地均匀的骰子”,有几种不同的结果,结果分别有哪些?
生:在试验中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。
师:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。
师:考察试验二“抛掷一枚质地均匀的硬币”有哪些基本事件?
生:在试验中基本事件有两个,即“正面朝上”和“反面朝上”。
师:那基本事件有什么特点呢?
问题:(1)在“抛掷一枚质地均匀的骰子”试验中,会同时出现“1点”和“2点”这两个基本事件吗?
(2)事件“出现偶数点”包含了哪几个基本事件?
由如上问题,分别得到基本事件如下的两个特点:
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。(让学生交流讨论,教师再加以总结、概括)
【设计意图】让学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力
例1从字母中任意取出两个不同字母的试验中,有哪些基本事件?
师:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果写出来,本小题我们可以按照字母排序的顺序,用列举法列出所有基本事件的结果。
解:所求的基本事件共有6个:
【设计意图】由于学生没有学习排列组合知识,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了求古典概型中基本事件总数这一难点,同时渗透了数形结合及分类讨论的数学思想。
师:你能发现前面两个数学试验和例1有哪些共同特点吗?(先让学生交流讨论,然后教师抽学生回答,并在学生回答的基础上再进行补充)
试验一中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是;
试验二中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是;
例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是;
经概括总结后得到:
①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。
我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。
【设计意图】学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳问题的能力。
3、概念深化,加深理解
试验“向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的”。你认为这是古典概型吗?为什么?
生:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。
试验“某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环’。你认为这是古典概型吗?为什么?
生:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。
【设计意图】这两个问题的设计是为了让学生更加准确的把握古典概型的两个特点,突破了如何判断一个试验是否是古典概型这一教学难点,培养学生思维的深刻性与批判性。
4、观察比较推导公式
【设计意图】学生通过运用观察、比较方法得出古典概型的概率计算公式,体验数学知识形成的发生与发展的过程,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。
师:我们在使用古典概型的概率公式时,应该还要注意些什么呢?(先让学生自由说,教师再加以归纳)在使用古典概型的概率公式时,应该注意:
①要判断该概率模型是不是古典概型;
②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。
【设计意图】深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。
5、应用与提高
【设计意图】本题通过学生的观察比较,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐使学生养成自主探究能力。同时培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣。
6、知识梳理课堂小结
1、本节课你学习到了哪些知识?
2、本节课渗透了哪些数学思想方法?
7、作业布置
1、阅读本节教材内容
2、必做题课本130页练习第1,2题,课本134页习题3。2A组第4题
3、选做题课本134页习题B组第1题
8、教学反思
本节课的教学设计以“问题串”的方式呈现为主,教学过程中师生共同合作,体验古典概型的特点,公式的生成、发现,把“数学发现”的权力还给学生,让学生感受知识形成的过程,获得数学发现的体验。将学习的主动权较完整地交还给学生。本节课始终本着在教师的引导下,学生通过讨论、归纳、探究等方式自主获取知识,从而达到满意的教学效果。构建利于学生学习的有效教学情境,较好地拓展师生的活动空间,符合新课程的理念。
本文来源:http://www.010zaixian.com/zuowen/chuxi/3798866.htm